Partial bladder outlet obstruction (pBOO) results in bladder fibrosis that is initiated by an inflammatory cascade and the decompensation after smooth muscle hypertrophy. We have been using an animal model to develop the hypothesis that mesenchymal stem cells (MSCs) are able to mitigate this cytokine cascade and prevent bladder deterioration. We hypothesized that intraperitoneal administration of MSCs can produce the same effects as intravenously administered cells but may require higher dosing. Intraperitoneal treatment will provide insights into the mechanisms of action and may offer advantages over intravenous administration, as it will permit allow higher doses and potentially reduce systemic exposure. Rats underwent a surgical induction of pBOO and instillation of either 1 × 106 or 5 × 106 commercially acquired MSCs into the peritoneum. RT-PCR, immunohistochemistry, and urodynamics were used to compare treatment groups with controls. pBOO resulted in a marked, statistically significant, upregulation of inflammatory markers in the bladder, including transforming growth factor-β, hypoxia-inducible factor-1α, hypoxia-inducible factor-3α, mammalian target of rapamycin, and collagen types I and III. Moderate but inconsistent levels of downregulation were seen with 1 × 106 MSCs, but excellent and reliable downregulation was seen with 5 × 106 MSCs ( P < 0.05). Immunohistochemistry confirmed that protein levels were affected in accordance with mRNA upregulation. Urodynamics demonstrated MSC treatment resulted in whole organ physiological benefits, as they prevented elevations in detrusor pressure. In conclusion, intraperitoneal administration of MSCs resulted in a similar effect as intravenous administration; however, this required a higher dose. This has significant implications for determining the mechanism of action and potential clinical application for human therapy.
Introduction: Partial bladder outlet obstruction (pBOO) results in increased urinary storage pressure and significant morbidity. Increased pressure results in a sequence of programmed events: an initial inflammatory phase, smooth muscle hypertrophy, and fibrosis. Although epithelial-mesenchymal transition (EMT) and mast cell accumulation play intermediary roles in some fibrotic conditions, their role in pBOO has not yet been elucidated. Mesenchymal stem cell (MSC) therapy is emerging as a promising treatment for several conditions. It potently inhibits bladder deterioration after pBOO; however, its mechanism of action is insufficiently understood. Thus, we hypothesize that EMT type II pathway plays a significant role in pBOO, aided by the recruitment and activation of mast cells, and these are potently inhibited by MSCs.
Methods: PBOO was surgically induced in female Sprague-Dawley rats and simultaneously treated with MSCs. Treatment effect was determined after two or four weeks, and compared to untreated controls. Immunohistochemistry was used to measure markers characteristic of EMT (vimentin, collagenase, and collagen). Whole and degranulated mast cell counts were also performed.
Results: PBOO resulted in an increased expression of collagenase, vimentin, and collagen. Mast cell recruitment increased proportionately to the length of bladder obstruction. MSC treatment significantly mitigated the EMT type II response, but mast cell recruitment and degranulation were unaffected.
Conclusions: Our results demonstrate the involvement of EMT type II in the pathophysiology of pBOO and confirm its mitigation with MSC treatment independent of mast cells response. The observations provide insight into the mechanism of action and have therapeutic ramifications.
stratification, and transwell culture further enhanced stratification. OCT showed that the urothelium with transwell culture was generally thicker than in a normal dish. In an immunohistological analysis, stratified uroplakin II-positive epithelium was observed in transwells. CONCLUSIONS: We demonstrated for the first time that several factors enhanced the directed differentiation and stratification of bladder urothelium from hiPSCs. Our stratified urothelium model might be useful in the field of regenerative medicine of the bladder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.