During procurement, isolation, and transplantation, islets are exposed to high levels of oxidative stress triggering a variety of signaling pathways that can ultimately lead to cell death. Glutamine is an important cellular fuel and an essential precursor for the antioxidant glutathione. The aim of this study was to examine the role of intraductal glutamine administration in facilitating recovery of isolated rat islets from pancreases subjected to a clinically relevant period of warm ischemia. Islets were isolated in Sprague-Dawley (SD) rats (n = 18 per group). Pancreata in groups 1 and 2 were procured immediately while groups 3 and 4 were subjected to 30-min warm ischemia. Groups 2 and 4 were treated intraductally with 5 mM glutamine prior to pancreatectomy. Exposure to 30-min warm ischemia significantly reduced islet yield [groups 1 & 2 (nonischemia): 503 ± 29 islets/rat vs. groups 3 & 4 (ischemia): 247 ± 26 islets/rat; p < 0.05]. Intraductal glutamine treatment significantly improved islet yield when pancreata were subjected to 30-min warm ischemia [144 ± 16 islets/rat without glutamine (group 3) vs. 343 ± 36 islets/rat with glutamine (group 4), p < 0.05]. Glutamine also significantly improved islet viability (values were 50 ± 4% in group 4 vs. 27 ± 3% in group 3, p < 0.05). Similarly, glutathione (reduced) levels were significantly elevated in both glutamine-treated groups; however, this increase was greatest in tissues exposed to ischemia (2.76 ± 0.04 nmol/mg protein in group 4 vs. 1.66 ± 0.04 nmol/mg protein in group 3, p < 0.05). Intraductal glutamine administration considerably improves the islet yield, viability, and augments endogenous glutathione levels in pancreata procured after a clinically relevant period of ischemia. Intraductal administration of glutamine at the time of digestive enzyme delivery into the harvested pancreas may represent a simple yet effective tool to improve islet yields in clinical isolations.
Our results demonstrate that consumption of potato skins containing glycoalkaloids can significantly aggravate intestinal inflammation in predisposed individuals.
Background
Normothermic machine perfusion (NMP) of liver grafts donated after circulatory death (DCD) has shown promise in large animal and clinical trials. Following procurement, initial flush with a cold preservation solution is the standard of care. There is concern that initial cooling followed by warming may exacerbate liver injury, and the optimal initial flush temperature has yet to be identified. We hypothesize that avoidance of the initial cold flush will yield better quality liver grafts.
Methods
Twenty-four anaesthetized pigs were withdrawn from mechanical ventilation and allowed to arrest. After 60-minutes of warm ischemia to simulate a DCD procurement, livers were flushed with histidine-tryptophan-ketoglutarate (HTK) at 4°C, 25°C or 35°C (n = 4 per group). For comparison, an adenosine-lidocaine crystalloid solution (AD), shown to have benefit at warm temperatures in heart perfusions, was also used (n = 4 per group). During 12-hours of NMP, adenosine triphosphate (ATP), lactate, transaminase levels, and histological injury were determined. Bile production and hemodynamics were monitored continuously.
Results
ATP levels recovered substantially following 1-hour of NMP reaching pre-ischemic levels by the end of NMP with no difference between groups. There was no difference in peak aspartate aminotransferase (AST) or in lactate dehydrogenase (LDH). Portal vein resistance was lowest in the 4°C group reaching significance after 2 hours (0.13 CI -0.01,0.277, p = 0.025). Lactate levels recovered promptly with no difference between groups. Comparison to AD groups showed no statistical difference in the abovementioned parameters. On electron microscopy the HTK4°C group had the least edema with mean cell thickness of 2.92μm (p = 0.41) while also having the least sinusoidal dilatation with a mean diameter of 5.36μm (p = 0.04). For AD, the 25°C group had the lowest mean cell thickness at 3.14μm (p = 0.09).
Conclusions
Avoidance of the initial cold flush failed to demonstrate added benefit over standard 4°C HTK in this DCD model of liver perfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.