Bu çalışmada Duygusal Yeme Ölçeği (DYÖ) Türkçeye çevrilerek geçerlik ve güvenirliğinin incelenmesi amaçlanmıştır. Yöntem: Araştırmanın örneklemini bir üniversitenin sağlık eğitimi veren hemşirelik ve ebelik bölümü öğrencisi toplam 749 kişi oluşturmuştur. Öğrencilere DYÖ yanında Oxford Mutluluk Ölçeği (OMÖ), Beck Depresyon Ölçeği (BDÖ), Ortoreksiya Nervoza-11 Ölçeği (ORTO-11), Zarit Bakıcı Yük Ölçeği (ZBYÖ) ve Yeme Tutum Testi (YTT) uygulanmıştır. Bulgular: Ölçeğin tümü için alfa iç tutarlık katsayısı 0,84 olarak hesaplanmıştır. Tıpkı orijinal ölçekte olduğu gibi Türkçe versiyon da üçlü bir faktör yapısı göstermektedir: yeme isteğini engelleyememe, yiyeceğin türü ve suçluluk hissi. Her bir maddenin düzeltilmiş madde toplam puan korelasyon katsayıları 0,34 düzeyinin üzerinde bulunmuştur. DYÖ; OMÖ ile düşük düzeyde negatif yönde (r=-0,15; p<0,001), BDÖ ile düşük düzeyde pozitif yönde (r=0,16; p<0,001), ZBYÖ ile orta düzeyde pozitif yönde (r=0,36; p<0,01), YTT ile orta düzeyde negatif yönde (r=-0,33; p<0,001) korelasyon göstermiştir. Uygulanan varyans analizi; normal kilolu, aşırı kilolu ve obez öğrencilerin DYÖ toplam puanları arasındaki farklılığın anlamlı düzeyde olduğunu göstermiştir (F(2,712) =11,17; p<0,001; η 2 =0,03). Sonuç: DYÖ Türkçe formunun iç tutarlılığının yüksek bulunması hem güvenirliğini hem de kurultu geçerliliğini destekleyen bir bulgu olarak yorumlanmıştır. Verilerimiz, DYÖ'nün Türkçe formunun üniversite öğrencilerinin duygusal yeme eğilimlerini değerlendirmek konusundaki geçerliğini destekleyen ek kanıtlar sağlamıştır.
The concept of addiction, which is defined as an over-indulgence of an object or behavior, usually associated with the use of substances such as cigarettes, alcohol, and drugs. However in recent years it has been argued that some behaviors such as pathological gambling, exercising, binge eating, sleeping etc. are addictive as well. The same applies to use of technological devices and applications such as computers, the internet, online games, tablets, mobile phones etc. Excessive use of these technologies can lead to technology addiction. Computers, the internet and smartphones have become an important part of everyday life. According to the "We Are Social" 2017 and "Internet and Social Media Users Statistical Report", 50% of the world population uses Internet, 37% are active social media users and 66% are smart phone users. This situation is similar in Turkey. According to the data of Turkish Statistical Institute 2016 61% of Turkey's population uses the internet, and the leading purpose of using the internet is social media. In addition to that, there is at least one mobile phone in 96% of households in Turkey. Risk taking and excitement seeking behaviors during puberty increase the susceptibility of adolescent to addictions. The use of technologies such as the Internet and social media is more common among adolescents than adults. Adolescence is regarded as a critical period in terms of technological addictions such as internet addiction, social media addiction, digital game addiction and smart phones addiction. The prevalence of technology addiction in adolescents ranges between 4.2% to 21% in the world and 2.33% to 14% in our country. Puberty is an important period in terms of identity and personality development. The need to be a member of a group, the risk of loneliness, and the increase in depressive tendencies etc. may increase the risk for technology addiction in adolescents. Therefore, technology addiction in adolescents, historical development process, risk factors for technology addiction and its relationship with mental illnesses, recognizing technology addiction, prevention and intervention methods will be discussed in this review.
In this paper, we explore the susceptibility of the Q-learning algorithm (a classical and widely used reinforcement learning method) to strategic manipulation of sophisticated opponents in games. We quantify how much a strategically sophisticated agent can exploit a naive Q-learner if she knows the opponent's Q-learning algorithm. To this end, we formulate the strategic actor's problem as a Markov decision process (with a continuum state space encompassing all possible Q-values) as if the Q-learning algorithm is the underlying dynamical system. We also present a quantization-based approximation scheme to tackle the continuum state space and analyze its performance both analytically and numerically.
Aim: This study was conducted to reveal the metaphorical perceptions of the mothers of 53 schizophrenic patientstreated in the community mental health center of a public hospital in a western province about schizophrenia. Material and Methods: The research was conducted with the mothers of 53 schizophrenic patients between June and August 2018, using a basic qualitative research design. The data were collected through an open-ended questionnaire containing the sentence “Schizophrenia is like ………. because ………..”. The content analysis technique was used in the analysis of the data. Results: Considering the common features of 53 metaphors produced by mothers regarding the concept of schizophrenia, metaphors were gathered in 7 different categories. Among the metaphors produced by the mothers, it was observed that the metaphors of Darkness, Cloud, and Empty brain were the most. Conclusion: It was determined that the meanings assigned to the concept of schizophrenia by the mothers are negative in general and have a wide variety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.