Remaining useful life (RUL) prediction is necessary for guaranteeing machinery’s safe operation. Among deep learning architectures, convolutional neural network (CNN) has shown achievements in RUL prediction because of its strong ability in representation learning. Features from different receptive fields extracted by different sizes of convolution kernels can provide complete information for prognosis. The single size convolution kernel in traditional CNN is difficult to learn comprehensive information from complex signals. Besides, the ability to learn local and global features synchronously is limited to conventional CNN. Thus, a multiscale convolutional neural network (MS-CNN) is introduced to overcome these aforementioned problems. Convolution filters with different dilation rates are integrated to form a dilated convolution block, which can learn features in different receptive fields. Then, several stacked integrated dilated convolution blocks in different depths are concatenated to extract local and global features. The effectiveness of the proposed method is verified by a bearing dataset prepared from the PRONOSTIA platform. The results turn out that the proposed MS-CNN has higher prediction accuracy than many other deep learning-based RUL methods.
The remaining useful life (RUL) of bearings based on deep learning methods has been increasingly used. However, there are still two obstacles in deep learning RUL prediction: (1) the training process of the deep learning model requires enough data, but run-to-failure data are limited in the actual industry; (2) the mutual dependence between RUL predictions at different time instants are commonly ignored in existing RUL prediction methods. To overcome these problems, a RUL prediction method combining the data augmentation strategy and Wiener–LSTM network is proposed. First, the Sobol sampling strategy is implemented to augment run-to-failure data based on the degradation model. Then, the Wiener–LSTM model is developed for the RUL prediction of bearings. Different from the existing LSTM-based bearing RUL methods, the Wiener–LSTM model utilizes the Wiener process to represent the mutual dependence between the predicted RUL results at different time instants and embeds the Wiener process into the LSTM to control the uncertainty of the result. A joint optimization strategy is applied in the construction of the loss function. The efficacy and superiority of the proposed method are verified on a rolling bearing dataset obtained from the PRONOSTIA platform. Compared with the conventional bearing RUL prediction methods, the proposed method can effectively augment the bearing run-to-failure data and, thus, improve the prediction results. Meanwhile, fluctuations of the bearing RUL prediction result are significantly suppressed by the proposed method, and the prediction errors of the proposed method are much lower than other comparative methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.