Robert Bain and colleagues conduct a systematic review and meta-analysis to assess whether water from “improved” sources is less likely to contain fecal contamination than “unimproved” sources and find that access to an “improved source” provides a measure of sanitary protection but does not ensure water is free of fecal contamination.
Please see later in the article for the Editors' Summary
ObjectivesTo estimate exposure to faecal contamination through drinking water as indicated by levels of Escherichia coli (E. coli) or thermotolerant coliform (TTC) in water sources.MethodsWe estimated coverage of different types of drinking water source based on household surveys and censuses using multilevel modelling. Coverage data were combined with water quality studies that assessed E. coli or TTC including those identified by a systematic review (n = 345). Predictive models for the presence and level of contamination of drinking water sources were developed using random effects logistic regression and selected covariates. We assessed sensitivity of estimated exposure to study quality, indicator bacteria and separately considered nationally randomised surveys.ResultsWe estimate that 1.8 billion people globally use a source of drinking water which suffers from faecal contamination, of these 1.1 billion drink water that is of at least ‘moderate’ risk (>10 E. coli or TTC per 100 ml). Data from nationally randomised studies suggest that 10% of improved sources may be ‘high’ risk, containing at least 100 E. coli or TTC per 100 ml. Drinking water is found to be more often contaminated in rural areas (41%, CI: 31%–51%) than in urban areas (12%, CI: 8–18%), and contamination is most prevalent in Africa (53%, CI: 42%–63%) and South-East Asia (35%, CI: 24%–45%). Estimates were not sensitive to the exclusion of low quality studies or restriction to studies reporting E. coli.ConclusionsMicrobial contamination is widespread and affects all water source types, including piped supplies. Global burden of disease estimates may have substantially understated the disease burden associated with inadequate water services.
Safe environmental conditions and the availability of standard precaution items are important to prevent and treat infection in health care facilities (HCFs) and to achieve Sustainable Development Goal (SDG) targets for health and water, sanitation, and hygiene. Baseline coverage estimates for HCFs have yet to be formed for the SDGs; and there is little evidence describing inequalities in coverage. To address this, we produced the first coverage estimates of environmental conditions and standard precaution items in HCFs in low- and middle-income countries (LMICs); and explored factors associated with low coverage. Data from monitoring reports and peer-reviewed literature were systematically compiled; and information on conditions, service levels, and inequalities tabulated. We used logistic regression to identify factors associated with low coverage. Data for 21 indicators of environmental conditions and standard precaution items were compiled from 78 LMICs which were representative of 129,557 HCFs. 50% of HCFs lack piped water, 33% lack improved sanitation, 39% lack handwashing soap, 39% lack adequate infectious waste disposal, 73% lack sterilization equipment, and 59% lack reliable energy services. Using nationally representative data from six countries, 2% of HCFs provide all four of water, sanitation, hygiene, and waste management services. Statistically significant inequalities in coverage exist between HCFs by: urban-rural setting, managing authority, facility type, and sub-national administrative unit. We identified important, previously undocumented inequalities and environmental health challenges faced by HCFs in LMICs. The information and analyses provide evidence for those engaged in improving HCF conditions to develop evidence-based policies and efficient programs, enhance service delivery systems, and make better use of available resources.
BackgroundAccess to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household.ObjectivesWe assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type.MethodsWe performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type.ResultsWater quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p < 0.001) and in HSW (p = 0.03). Source water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine.ConclusionsPiped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water.CitationShields KF, Bain RE, Cronk R, Wright JA, Bartram J. 2015. Association of supply type with fecal contamination of source water and household stored drinking water in developing countries: a bivariate meta-analysis. Environ Health Perspect 123:1222–1231; http://dx.doi.org/10.1289/ehp.1409002
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.