Determination of eight drugs of abuse in blood has been performed using paper spray or extraction spray mass spectrometry in under 2 min with minimal sample preparation. A method has been optimized for quantification of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxy-N-methylamphetamine (MDMA), 3,4-methylenedioxy-N-ethylamphetamine (MDEA), morphine, cocaine, and Δ9-tetrahydrocannabinol (THC) from a single blood spot. Sample to sample variations of 1-5% relative standard deviation were achieved using stable isotope-labeled internal standards and tandem mass spectrometry. Limits of detection for all drugs were below typical physiological and toxicological levels. Paper spray and extraction spray each used less than 10 μL of whole blood. These methods exhibit the potential for performing rapid and high-throughput assays for selective on-site multicompound quantitative screening of illicit drugs.
Paper spray mass spectrometry is applied to oncology drugs in fresh whole blood samples supported on filter paper substrates instead of dry blood as done previously. Addition of the coagulant alum clotted the blood and allowed for immediate sample analysis. The coagulant did not interfere with the function of the paper spray nor did it add features to the mass spectra. Quantitative analysis of therapeutic drugs in the blood was achieved utilizing internal standards which were pre-spotted onto the filter paper. Eight oncology drugs were examined, with lower limits of detection ranging between 0.5 and 17 ng mL À1 and linear dynamic ranges greater than two orders of magnitude. Inter-day accuracies of quality controls for pazopanib ranged from 102 to 118%, with imprecisions of 9 to 13%. This one-step method requires 10 mL of blood, a drop of solvent, and takes 45 seconds per trial. These results indicate applicability to point-of-care therapeutic drug monitoring in a clinical setting.
We report an accelerated biomarker discovery workflow and results of sample screening by mass spectrometry based on multiple reaction monitoring (MRM). This methodology shows promising initial results for the currently unsolved challenge of Parkinson's disease (PD) laboratory diagnosis by biomarker screening. Small molecules present in cerebrospinal fluid (CSF) at low parts per million levels are monitored using specific transitions connecting ion pairs. A set of such transitions constitutes a multidimensional chemical profile used to distinguish and characterize different CSF samples using multivariate statistical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.