We present results from the JINA REACLIB project, an ongoing effort to maintain a current and accurate library of thermonuclear reaction rates for astrophysical applications. Ongoing updates are transparently documented and version tracked, and any set of rates is publicly available and can be downloaded via a web interface at http://groups.nscl.msu.edu/jina/reaclib/db/. We discuss here our library V1.0, a snapshot of recommended rates for stable and explosive hydrogen and helium burning. We show that the updated reaction rates lead to modest but significant changes in full network, full 1D X-ray burst model calculations, compared to calculations with previously used reaction rate sets. The late time behavior of X-ray burst light curves shows significant changes, suggesting that the previously found small discrepancies between model calculations and observations may be solved with a better understanding of the nuclear input. Our X-ray burst model calculations are intended to serve as a benchmark for future model comparisons and sensitivity studies, as the complete underlying nuclear physics is fully documented and publicly available.
Among the materials used for fabricating microfluidic devices, plastics have been increasingly employed in the past few years. Although several methods for fabricating plastic devices have appeared in the literature, reports typically indicate one set of conditions that yield functional devices; little data are available detailing how results are affected by their changes in the process variables. We report in this paper a systematic study of fabrication process parameters including compression rate, molding temperature, and the force used by a hydraulic press, as well as their effects on the device properties. Using cyclic olefin copolymers as the molding material, we found that the device thickness decreased when the molding temperature and compression force increased. Fidelity in the pattern transfer from a master to a device was confirmed by the reproduction of nanostructures and channel depth/ shape. Pattern transfer fidelity appeared to be independent of the molding temperature and compression force, at least in the range of conditions we investigated. Stress whitening (or crazing) on the device surface was found to be related to the molding temperature and the cooling rate of the mold/device assembly. The bond strength between the layers of a laminated device was determined to be a function of the lamination temperature. In addition, we demonstrated the utility of a plastic microfluidic device by separating proteins.[1678]
We apply discriminant analysis to 1023 active regions and their subsurface-flow parameters, such as vorticity and kinetic helicity density, with the goal of distinguishing between flaring and non-flaring active regions. We derive synoptic subsurface flows by analyzing GONG high-resolution Doppler data with ring-diagram analysis. We include magneticflux values in the discriminant analysis derived from NSO Kitt Peak and SOLIS synoptic maps binned to the same spatial scale as the helioseismic analysis. For each active region, we determine the flare information from GOES and include all flares within 60°central meridian distance to match the coverage of the ring-diagram analysis. The subsurface-flow characteristics improve the ability to distinguish between flaring and non-flaring active regions. For the C-and M-class flare category, the most important subsurface parameter is the socalled structure vorticity, which estimates the horizontal gradient of the horizontal-vorticity components. The no-event skill score, which measures the improvement over predicting that no events occur, reaches 0.48 for C-class flares and 0.32 for M-class flares, when the structure vorticity at three depths combined with total magnetic flux are used. The contributions come mainly from shallow layers within about 2 Mm of the surface and layers deeper than about 7 Mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.