Inflammatory markers have been shown to predict neurocognitive outcomes in aging adults; however, the degree to which peripheral markers mirror the central nervous system remains unknown. We investigated the association between plasma and CSF markers of inflammation, and explored whether these markers independently predict CSF indicators of Alzheimer’s disease (AD) pathology or neuronal damage. Plasma and CSF samples were analyzed for inflammatory markers in a cohort of asymptomatic older adults (n=173). CSF samples were analyzed for markers of AD pathology (Aβ42, phosphorylated tau [p-tau], sAPP-β) or neuronal damage (total tau; neurofilament light chain [NFL])(n=147). Separate linear models for each analyte were conducted with CSF and plasma levels entered simultaneously as predictors and markers of AD pathology or neuronal damage as outcome measures. Strong associations were noted between CSF and plasma MIP-1β levels, and modest associations were observed for remaining analytes. With respect to AD pathology, higher levels of plasma and CSF IL-8, CSF MIP-1β, and CSF IP-10 were associated with higher levels of p-tau. Higher levels of CSF IL-8 were associated with higher levels of CSF Aβ1-42. Higher CSF sAPP-beta levels were associated with higher plasma markers only (IL-8; MCP-1). In terms of neuronal injury, higher levels of plasma and CSF IL-8, CSF IP-10, and CSF MIP-1β were associated with higher levels of CSF total tau. Exploratory analyses indicated that CSF Aβ42 modifies the relationship between plasma inflammatory levels and CSF tau levels. Results suggest that both plasma and CSF inflammatory markers independently relay integral information about AD pathology and neuronal damage.
IntroductionMCP-1 and eotaxin-1 are encoded on chromosome 17 and have been shown to reduce hippocampal neurogenesis in mice. We investigated whether these chemokines selectively associate with memory in individuals with mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia.MethodsMCP-1 and eotaxin-1 were assayed in controls, MCI, and AD dementia patients with varying phenotypes (n = 171). A subset of 55 individuals had magnetic resonance imaging (MRI) scans available. Composite scores for cognitive variables were created, and medial temporal lobe volumes were obtained.ResultsAn interaction was noted between MCP-1 and eotaxin-1, such that deleterious associations with memory were seen when both chemokines were elevated. These associations remained significant after adding APOE genotype and comparison (non-chromosome 17) chemokines into the model. These chemokines predicted left medial temporal lobe volume and were not related to other cognitive domains.DiscussionThese results suggest a potentially selective role for MCP-1 and eotaxin-1 in memory dysfunction in the context of varied MCI and AD dementia phenotypes.
We have sequenced the complete genomes of 72 individuals affected with early-onset familial Alzheimer's disease caused by an autosomal dominant, highly penetrant mutation in the presenilin-1 (PSEN1) gene, and performed genome-wide association testing to identify variants that modify age at onset (AAO) of Alzheimer's disease. Our analysis identified a haplotype of single-nucleotide polymorphisms (SNPs) on chromosome 17 within a chemokine gene cluster associated with delayed onset of mild-cognitive impairment and dementia. Individuals carrying this haplotype had a mean AAO of mild-cognitive impairment at 51.0±5.2 years compared with 41.1±7.4 years for those without these SNPs. This haplotype thus appears to modify Alzheimer's AAO, conferring a large (~10 years) protective effect. The associated locus harbors several chemokines including eotaxin-1 encoded by CCL11, and the haplotype includes a missense polymorphism in this gene. Validating this association, we found plasma eotaxin-1 levels were correlated with disease AAO in an independent cohort from the University of California San Francisco Memory and Aging Center. In this second cohort, the associated haplotype disrupted the typical age-associated increase of eotaxin-1 levels, suggesting a complex regulatory role for this haplotype in the general population. Altogether, these results suggest eotaxin-1 as a novel modifier of Alzheimer's disease AAO and open potential avenues for therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.