Bismuth telluride nanoparticles (NPs) have been synthesized using a low-temperature wet-chemical approach from bismuth(III) oleate and tri-n-octylphosphine telluride. The size and shape of the NPs can be controlled by adjusting the temperature, reaction time, and nature of the surfactants and solvents. Aromatic hydrocarbons (toluene, xylenes) and ethers (phenyl- and benzyl-ether) favor the formation of stoichiometric Bi2Te3 NPs of platelike morphology, whereas the presence of oleylamine and 1-dodecanethiol yields Bi-rich Bi2Te3 spherical NPs. XRD, IR, SEM, TEM, and SAED techniques have been used to characterize the obtained products. We show that the surfactants can be efficiently removed from the surface of the NPs using a two-step process employing nitrosonium tetrafluoroborate and hydrazine hydrate. The surfactant-free NPs were further consolidated into high density pellets using cold-pressing and field-assisted sintering techniques. The sintered surfactant-free Bi2Te3 showed electrical and thermal properties comparable to Bi2Te3 materials processed through conventional solid state techniques, and greatly improved over other nanostructured Bi2Te3 materials synthesized by wet-chemical approaches.
A simple procedure has been developed to create palladium (Pd) films on the surface of several common polymers used in commercial fused deposition modeling (FDM) and stereolithography (SLA) based three-dimensional (3D) printing by an electroless deposition process. The procedure can be performed at room temperature, with equipment less expensive than many 3D printers, and occurs rapidly enough to achieve full coverage of the film within a few minutes. 3D substrates composed of dense logpile or cubic lattices with part sizes in the mm to cm range, and feature sizes as small as 150 μm were designed and printed using commercially available 3D printers. The deposition procedure was successfully adapted to show full coverage in the lattice substrates. The ability to design, print, and metallize highly ordered three-dimensional microscale structures could accelerate development of a range of optimized chemical and mechanical engineering systems.
The strain-rate sensitivity exponent m and activation volume υ∗ are often used to characterize the strain-rate sensitivity of strength behavior in metals and alloys. Complications can arise when the m and υ∗ values become indeterminate, due to factors such as an inherent scatter in the mechanical property data. The study of commercial Ti-alloy wires is considered wherein to overcome this limitation, the formulation of the Kocks–Mecking (K–M) model is modified to provide a parameter cb that characterizes the microstructural scale responsible for the observed plasticity and work hardening behavior. The softening factor cb is found to be independent of strain-rate for the Ti-alloy wires of this study. It is proposed that cb !can offer a versatile and complementary computation to the activation volume υ∗ since its formulation includes the yield and ultimate strength values along with the plastic strain. For the tensile testing of Ti-alloy wires, a low cb-value of 14 is calculated for Ti-6Al-4V that is consistent with >10 % plasticity during work hardening whereas a high cb-value of 135 for Ti-6Al-7Nb corresponds with <4 % plasticity.
Structural steel plates with tensile strength of 490 MPa and 6 mm in thickness were successfully joined with microstructural control by single sided one-pass butt friction stir welding (FSW). The microstructure in the stir zone (SZ) could be changed to bainite, bainite with proeutectoid ferrite, and fine equiaxed ferrite based on the welding temperature. The bainite increased the hardness and tensile strength, and the ferrite gave the joint similar mechanical properties similar to the base metal. The welding temperature was controlled between below Ac 1 and above Ac 3 by the rotating rate of the tool and tool materials; i.e. Ir-Re alloy and sintered c-BN with W-Re.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.