Organisms of Gram-negative phylum bacteroidetes, Porphyromonas gingivalis, underwent lysis on polished surfaces of silicon nitride (Si3N4) bioceramics. The antibacterial activity of Si3N4 was mainly the result of chemically driven principles. The lytic activity, although not osmotic in nature, was related to the peculiar pH-dependent surface chemistry of Si3N4. A buffering effect via the formation of ammonium ions (NH4(+)) (and their modifications) was experimentally observed by pH microscopy. Lysis was confirmed by conventional fluorescence spectroscopy, and the bacteria's metabolism was traced with the aid of in situ Raman microprobe spectroscopy. This latter technique revealed the formation of peroxynitrite within the bacterium itself. Degradation of the bacteria's nucleic acid, drastic reduction in phenilalanine, and reduction of lipid concentration were observed due to short-term exposure (6 days) to Si3N4. Altering the surface chemistry of Si3N4 by either chemical etching or thermal oxidation influenced peroxynitrite formation and affected bacteria metabolism in different ways. Exploiting the peculiar surface chemistry of Si3N4 bioceramics could be helpful in counteracting Porphyromonas gingivalis in an alkaline pH environment.
Perioperative and latent infections are leading causes of revision surgery for orthopaedic devices resulting in significant increased patient care, comorbidities, and attendant costs. Identifying biomaterial surfaces that inherently resist biofilm adhesion and bacterial expression is an important emerging strategy in addressing implant-related infections. This in vitro study was designed to compare biofilm formation on three biomaterials commonly employed in spinal fusion surgery-silicon nitride (Si N ), polyetheretherketone (PEEK), and a titanium alloy (Ti6Al4V-ELI) -using one gram-positive and one gram-negative bacterial species. Disc samples from various surface treated Si N , PEEK, and Ti6Al4V were inoculated with 10 CFU/mm Staphylococcus epidermidis (ATCC®14990™) or Escherichia coli (ATCC 25922™) and cultured in PBS, 7% glucose, and 10% human plasma for 24 and 48 h, followed by retrieval and rinsing. Vortexed solutions were diluted, plated, and incubated at 37 °C for 24 to 48 h. Colony forming units (CFU/mm ) were determined using applicable dilution factors and surface areas. A two-tailed, heteroscedastic Student's t-test (95% confidence) was used to determine statistical significance. The various Si N samples showed the most favorable bacterial resistance for both bacilli tested. The mechanisms for the bacteriostatic behavior of Si N are likely due to multivariate surface effects including submicron-topography, negative charging, and chemical interactions which form peroxynitrite (an oxidative agent). Si N is a new biomaterial with the apparent potential to inhibit biofilm formation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1521-1534, 2017.
The remarkable stoichiometric flexibility of hydroxyapatite (HAp) enables the formation of a variety of charged structural sites at the material’s surface which facilitates bone remodeling due to binding of biomolecule moieties in zwitterionic fashion. In this paper, we report for the first time that an optimized biomedical grade silicon nitride (Si3N4) demonstrated cell adhesion and improved osteoconductivity comparable to highly defective, non-stoichiometric natural hydroxyapatite. Si3N4’s zwitterionic-like behavior is a function of the dualism between positive and negative charged off-stoichiometric sites (i.e., N-vacancies versus silanols groups, respectively). Lattice defects at the biomaterial’s surface greatly promote interaction with positively- and negatively-charged functional groups in biomolecules, and result in the biologically effective characteristics of silicon nitride. These findings are anticipated to be a starting point for further discoveries of therapeutic bone-graft substitute materials.
While the reciprocity between bioceramics and living cells is complex, it is principally governed by the implant’s surface chemistry. Consequently, a deeper understanding of the chemical interactions of bioceramics with living tissue could ultimately lead to new therapeutic strategies. However, the physical and chemical principles that govern these interactions remain unclear. The intricacies of this biological synergy are explored within this paper by examining the peculiar surface chemistry of a relatively new bioceramic, silicon nitride (Si3N4). Building upon prior research, this paper aims at obtaining new insights into the biological interactions between Si3N4 and living cells, as a consequence of the off-stoichiometric chemical nature of its surface at the nanometer scale. We show here yet unveiled details of surface chemistry and, based on these new data, formulate a model on how, ultimately, Si3N4 influences cellular signal transduction functions and differentiation mechanisms. In other words, we interpret its reciprocity with living cells in chemical terms. These new findings suggest that Si3N4 might provide unique new medicinal therapies and effective remedies for various bone or joint maladies and diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.