-Our objective was to examine if the high-density, 256 channel, scalp interictal EEG data can be used for localizing the epilepsy areas in patients. This was done by examining the long-range temporal correlations (LRTC) of EEGs and also that of the phase synchronization index (SI) of EEGs. It was found that the LRTC of scalp SI plots were better in localizing the seizure areas as compared with the LRTC of EEGs alone. The EEG data of one minute duration was filtered in the low Gamma band of 30-50 Hz. A detrended fluctuation analysis (DFA) was used to find LRTC of the scalp EEG data. Contour plots were constructed using a montage of the layout of 256 electrode positions. The SI was computed after taking Hilbert transform of the EEG data. The SI between a pair of channel was inferred from a statistical tendency to maintain a nearly constant phase difference over a given period of time even though the analytic phase of each channel may change markedly during that time frame. The SI for each electrode was averaged over with the nearby six electrodes. LRTC of the SI was computed and spatial plots were made. It was found that the LRTC of SI was highest at the location of the epileptic sites. A similar pattern was not found in the LRTC of EEGs. This provides a noninvasive way to localize seizure areas from scalp EEG data.
Zebrafish are ideal for experimental studies in the classroom because, in contrast to chicks or mammals, fish embryos are relatively easy and inexpensive to maintain, and embryonic development can be observed with common classroom equipment. The eight student-developed laboratory exercises described here have been used by students in Neuroscience Research at Sidwell Friends School. This course uses zebrafish as a vertebrate model to study genetics, development, behavior, neurobiology, regeneration, learning, and memory. The students develop protocols through collaboration with the teacher and scientists in specific fields. Through individual research, students develop and perform their own experiments, formulate and test hypotheses, learn basic laboratory and microscopy techniques, collect and analyze data, read original scientific literature, and collaborate with prominent zebrafish researchers.
Radiocarbon-dated sediment cores from subalpine lakes were used to investigate post-glacial dust deposition in the Uinta Mountains (Utah, USA). Lake sediments were geochemically characterized with ICP-OES, ICP-MS and XRF core scanning. Collections from passive samplers constrain the properties of modern dust, and samples of regolith constrain properties of the local material within the watershed. Ca and Eu are more abundant in dust, whereas Ti and Zr are more abundant in local regolith. As a result, the Ca/Ti and Eu/Zr ratios are indices for the dust content of lake sediment. In all records, the dust index rises in the early Holocene as watersheds became stabilized with vegetation, reducing the influx of local material. After this point, values remained above average through the middle Holocene, consistent with an increased dust content in the sediment. Dust index values drop in the late Holocene in most lakes, suggesting a decrease in dust abundance. Generally synchronous shifts in dust index values in cores from lakes in different parts of this mountain range are evidence of enhanced dust deposition in this region during the middle Holocene, and are consistent with a variety of records for increased aridity in the southwestern USA at this time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.