In recent decades, economic damage from tropical cyclones (TCs) around the world has increased dramatically. Scientific literature published to date finds that the increase in losses can be explained entirely by societal changes (such as increasing wealth, structures, population, etc.) in locations prone to tropical cyclone landfalls, rather than by changes in annual storm frequency or intensity. However, no homogenized dataset of global tropical cyclone landfalls has been created that might serve as a consistency check for such economic normalization studies. Using currently available historical TC best-track records, a global database focused on hurricane-force strength landfalls was constructed. The analysis does not indicate significant long-period global or individual basin trends in the frequency or intensity of landfalling TCs of minor or major hurricane strength. The evidence in this study provides strong support for the conclusion that increasing damage around the world during the past several decades can be explained entirely by increasing wealth in locations prone to TC landfalls, which adds confidence to the fidelity of economic normalization analyses.
This study examines the local memory of atmospheric and oceanic changes associated with a tropical cyclone (TC). The memory is quantified through anomalous maximum potential intensity (MPI) evolution for 20 days prior to the arrival of a TC through 60 days after the TC passage. The local MPI weakens and is not restored to the evolving climatology until well after the TC has departed. Stabilization occurs through warming of the atmosphere and cooling of the ocean surface on different time scales. The time scale of MPI stabilization following TC passage is approximately 30–35 days for a tropical storm to 50–60 days for a category 3–5 hurricane, with significant storm-specific and basin-specific variability. The atmospheric stabilization (warming with respect to SST) begins with TC arrival and continues for approximately 7–10 days after passage, when the troposphere cools below normal. The rewarming of SST and the subsequent rewarming of the atmosphere occurs within approximately 35 days for all intensities, despite a positive (weakened) MPI anomaly through two months. This suggests that the atmosphere retains anomalous warmth beyond what can be attributable to sensible heating from the rewarmed SST. The maintenance of a positive MPI anomaly beyond 35 days is thus attributed to a feedback on larger scales that requires considerable further research. A TC’s passage through a region does not always lead to a weakening of the MPI. In regions poleward of the sharp SST gradient, the MPI one month after TC passage is often several millibars stronger than climatology. There are also mesoscale regions of destabilization one month after TC passage that may result partially from salinity changes driven by oceanic mixing as well as changes in precipitation and evaporation.
Tropical cyclone accumulated cyclone energy (ACE) has exhibited strikingly large global interannual variability during the past 40‐years. In the pentad since 2006, Northern Hemisphere and global tropical cyclone ACE has decreased dramatically to the lowest levels since the late 1970s. Additionally, the global frequency of tropical cyclones has reached a historical low. Here evidence is presented demonstrating that considerable variability in tropical cyclone ACE is associated with the evolution of the character of observed large‐scale climate mechanisms including the El Niño Southern Oscillation and Pacific Decadal Oscillation. In contrast to record quiet North Pacific tropical cyclone activity in 2010, the North Atlantic basin remained very active by contributing almost one‐third of the overall calendar year global ACE.
This paper synthesizes and summarizes atmospheric variability on time scales from seconds to decades through a phenomenological census. We focus mainly on unforced variability in the troposphere, stratosphere, and mesosphere. In addition to atmosphere-only modes, our scope also includes coupled modes, in which the atmosphere interacts with the other components of the Earth system, such as the ocean, hydrosphere, and cryosphere. The topics covered include turbulence on time scales of seconds and minutes, gravity waves on time scales of hours, weather systems on time scales of days, atmospheric blocking on time scales of weeks, the Madden-Julian Oscillation on time scales of months, the Quasi-Biennial Oscillation and El Niño-Southern Oscillation on time scales of years, and the North Atlantic, Arctic, Antarctic, Pacific Decadal, and Atlantic Multidecadal Oscillations on time scales of decades. The paper serves as an introduction to a special collection of Geophysical Research Letters on atmospheric variability. We hope that both this paper and the collection will serve as a useful resource for the atmospheric science community and will act as inspiration for setting future research directions. the atmosphere interacts with the other components of the Earth system, such as the ocean, hydrosphere, and cryosphere. Given these interactions, and the importance of the atmosphere for weather and climate, our intended audience is the entire Geophysical Research Letters readership. Our aim is to provide an authoritative, concise, and accessible point of reference for the most important modes of atmospheric variability. This Commentary serves as an introductory foreword to a virtual special collection of Geophysical Research Letters on atmospheric variability. To initiate the collection, we have identified some of the most influential and definitive papers to have been published in this journal in recent years. Our hope and expectation is that this will be a living collection, which will grow over time whenever seminal new papers are published. The contents of the Commentary are ordered in terms of increasing time scale, from seconds and minutes (section 2), to hours (section 3), days (section 4), weeks (section 5), months (section 6), years (section 7), and decades (section 8). We note at the outset, however, that the time scales of many atmospheric phenomena are not unambiguously defined. For example, the Madden-Julian Oscillation (section 6) is monitored and WILLIAMS ET AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.