This research examines the contribution of plant height, number of flowers, number of stems, as well the joint impacts of mutualists and antagonists on the pollination biology and seed production of the imperiled, deceptive orchid, Cypripedium candidum. We found flowering stem height to be the only morphological feature significant in reproduction, with taller flowering stems simultaneously receiving increased pollination and decreased seed predation. Furthermore we found decreased seed mass in individuals subjected to hand-self pollination treatments. Our results may help explain the factors limiting seed production in other Cypripedium and further emphasize the importance of management in orchid conservation.
BackgroundExperimental manipulations of floral nectar in food deceptive species can reveal insights into the evolutionary consequences of the deceptive strategy. When coupled to pollen tracking, the effects of the deceptive pollination syndrome on both male and female reproductive success may be quantified. Attraction of pollinators in deceit-pollinated species often relies on producing a conspicuous floral display which may increase visibility to pollinators, but in-turn may increase within plant selfing.MethodologyTo understand the role of deception in Orchidaceae reproduction we studied Cypripedium candidum. All species of the Cypripedium genus employ a generalized food deceptive pollination strategy and have been suggested as a model system for the study of pollinator deception. We conducted a nectar addition experiment that randomly assigned the four plants closest to a transect point to receive one of four histochemical dyes. Two individuals selected for nectar addition in each of altogether 25 blocks received 2μl of 25% sucrose solution in the labellum of each flower, while two others received no artificial nectar. Number of fruits produced, fruit mass and fruit abortion were scored at the end of the four-month experiment.ResultsNectar addition increased (p<0.0001) self-pollination and pollen discounting by nearly 3x, while plants not receiving nectar had greater (p<0.0001) numbers of non-self pollinia deposited and lower rates of pollen discounting. There was a non-significant (p = 0.0645) trend for deceptive plants to set more fruit, while presence of nectar did not affect pollen export.ConclusionsThis study demonstrates the adaptive advantages of food deception by showing a concurrent reduction in particular male and female functions when a food reward is restored to a deceptive flower. We found generalized food deception to not only decrease inbreeding depression in the system, but concurrently have no effect on pollinator attraction and fruit set when compared with rewarding flowers.
The Mitchell’s satyr, Neonympha mitchellii, is an endangered species that is limited to highly isolated habitats in the northern and southern United States. Conservation strategies for isolated endangered species often implement captive breeding and translocation programs for repopulation. However, these programs risk increasing the spread of harmful pathogens, such as the bacterial endosymbiont Wolbachia. Wolbachia can manipulate the host’s reproduction leading to incompatibilities between infected and uninfected hosts. This study uses molecular methods to screen for Wolbachia presence across the distribution of the Mitchell’s satyr and its subspecies, St. Francis satyr, which are both federally listed as endangered and are considered two of the rarest butterflies in North America. The screens confirmed the presence of Wolbachia in the northern and newly discovered southern populations of the Mitchell’s satyr, but not in the St. Francis satyr population. These results combined with previous reports of Wolbachia in N. mitchellii, highlight that Wolbachia infection varies both geographically and temporally in satyr populations. The temporal variance shows the importance of continued monitoring of Wolbachia infection during conservation programs. To reduce the risk of reproductive incompatibilities, it is advised that all individuals collected for conservation purposes be screened for Wolbachia and recommended to avoid the use of infected individuals for captive breeding and translocation programs.
Goats are being used increasingly to manage woody invasive plants in woodland habitats, but their specific impacts on those plants over a period of time during active, periodic browsing has not been documented. This study investigated bark-stripping by goats browsing on common buckthorn in savanna habitats, focusing on possible size-selective feeding and the cumulative effects of repeated, periodic browsing over a 3-year period. When surveyed after the first browsing period, bark was stripped selectively on buckthorn stems 20 to 60 mm in diameter. Approximately 60% of all stripped stems were completely girdled, but only 14-17% of stems were bark-stripped. After five browsing periods, 66% of standing stems displayed bark stripping and 39% were completely girdled. Buckthorn densities were reduced by 90% compared to the first browsing period, the decline resulting mostly from consumption of foliage and terminal shoots of small (<20 mm) buckthorn and bark-stripping resulting in top-kill in intermediate-sized (20-60 mm) plants. Large buckthorn (>60 mm) were largely unimpacted by goats. Relatively few (28%) seedling buckthorn were browsed by goats, although >90% of 2nd-year plants were browsed. Buckthorn can be managed in part via goat browsing, but repeated, periodic browsing over several to many years may be necessary to produce a significant impact, and other techniques will be needed to eliminate large, seed-producing plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.