Graphene has demonstrated great promise for technological use, yet control over material growth and understanding of how material imperfections affect the performance of devices are challenges that hamper the development of applications. In this work, we reveal new insight into the connections between the performance of the graphene devices as environmental sensors and the microscopic details of the interactions at the sensing surface. We monitor changes in the resistance of the chemical-vapor deposition grown graphene devices as exposed to different concentrations of ethanol. We perform thermal surface treatments after the devices are fabricated, use scanning probe microscopy to visualize their effects down to nanometer scale and correlate them with the measured performance of the device as an ethanol sensor. Our observations are compared to theoretical calculations of charge transfers between molecules and the graphene surface. We find that, although often overlooked, the surface cleanliness after device fabrication is responsible for the device performance and reliability. These results further our understanding of the mechanisms of sensing in graphene-based environmental sensors and pave the way to optimizing such devices, especially for their miniaturization, as with decreasing size of the active zone the potential role of contaminants will rise.
Atomic scale defects in semiconductors enable their technological applications and realization of novel quantum states. Using scanning tunneling microscopy and spectroscopy complemented by ab-initio calculations we determine the nature of defects in the anisotropic van der Waals layered semiconductor ReS2.We demonstrate the in-plane anisotropy of the lattice by directly visualizing chains of rhenium atoms forming diamond-shaped clusters. Using scanning tunneling spectroscopy we measure the semiconducting gap in the density of states. We reveal the presence of lattice defects and by comparison of their topographic and spectroscopic signatures with ab initio calculations we determine their origin as oxygen atoms absorbed at lattice point defect sites.These results provide an atomic-scale view into the semiconducting transition metal dichalcogenides, paving the way toward understanding and engineering their properties.
Semiconducting ferroelectric materials with low energy polarization switching offer a platform for next‐generation electronics such as ferroelectric field‐effect transistors. Recently discovered interfacial ferroelectricity in bilayers of transition metal dichalcogenide films provides an opportunity to combine the potential of semiconducting ferroelectrics with the design flexibility of 2D material devices. Here, local control of ferroelectric domains in a marginally twisted WS2 bilayer is demonstrated with a scanning tunneling microscope at room temperature, and their observed reversible evolution is understood using a string‐like model of the domain wall network (DWN). Two characteristic regimes of DWN evolution are identified: (i) elastic bending of partial screw dislocations separating smaller domains with twin stackings due to mutual sliding of monolayers at domain boundaries and (ii) merging of primary domain walls into perfect screw dislocations, which become the seeds for the recovery of the initial domain structure upon reversing electric field. These results open the possibility to achieve full control over atomically thin semiconducting ferroelectric domains using local electric fields, which is a critical step towards their technological use.
Vertical stacking of atomically thin materials offers a large platform for realizing novel properties enabled by proximity effects and moiré patterns. Here, we focus on mechanically assembled heterostructures of graphene and ReS2, a van der Waals layered semiconductor. Using scanning tunneling microscopy and spectroscopy, we image the sharp edge between the two materials as well as areas of overlap. Locally resolved topographic images revealed the presence of a striped superpattern originating in the interlayer interactions between graphene's hexagonal structure and the triclinic, low in-plane symmetry of ReS2. We compare the results with a theoretical model that estimates the shape and angle dependence of the moiré pattern between graphene and ReS2. These results shed light on the complex interface phenomena between van der Waals materials with different lattice symmetries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.