In this study, we computationally investigate the initial and subsequent steps in the chemical mechanism for the gas-phase thermal decomposition of 1,1-diamino-2,2-dinitroethene (FOX-7). We determine the key exothermic step in the gas-phase thermal decomposition of FOX-7 and explore the similarities and differences between FOX-7 and other geminal dinitro energetic materials. The calculations reveal a mechanism for NO loss involving a 3-member cyclic intermediate, rather than a nitro-nitrite isomerization, that occurs in the radical intermediates formed throughout the decomposition mechanism.
These experiments photolytically generate two key intermediates in the decomposition mechanisms of energetic materials with nitro substituents, 2-nitropropene, and 2-nitro-2-propyl radicals. These intermediates are produced at high internal energies and access a number of competing unimolecular dissociation channels investigated herein. We use a combination of crossed laser-molecular beam scattering and velocity map imaging to study the photodissociation of 2-bromo-2-nitropropane at 193 nm and the subsequent unimolecular dissociation of the intermediates above. Our results demonstrate that 2-bromo-2-nitropropane has four primary photodissociation pathways: C-Br bond fission yielding the 2-nitro-2-propyl radical, HBr elimination yielding 2-nitropropene, C-N bond fission yielding the 2-bromo-2-propyl radical, and HONO elimination yielding 2-bromopropene. The photofragments are formed with significant internal energy and undergo many secondary dissociation events, including the exothermic dissociation of 2-nitro-2-propyl radicals to NO + acetone. Calculations at the G4//B3LYP/6-311++g(3df,2p) level show that the presence of a radical at a nitroalkyl center changes the mechanism for and substantially lowers the barrier to NO loss. This mechanism involves an intermediate with a three-center ring rather than the intermediate formed during the traditional nitro-nitrite isomerization. The observed dissociation pathways of the 2-nitro-2-propyl radical and 2-nitropropene help elucidate the decomposition mechanism of larger energetic materials with geminal dinitro groups.
This work characterizes the internal energy distribution of the CD(2)CD(2)OH radical formed via photodissociation of 2-bromoethanol-d(4). The CD(2)CD(2)OH radical is the first radical adduct in the addition of the hydroxyl radical to C(2)D(4) and the product branching of the OH + C(2)D(4) reaction is dependent on the total internal energy of this adduct and how that energy is partitioned between rotation and vibration. Using a combination of a velocity map imaging apparatus and a crossed laser-molecular beam scattering apparatus, we photodissociate the BrCD(2)CD(2)OH precursor at 193 nm and measure the velocity distributions of the Br atoms, resolving the Br((2)P(1/2)) and Br((2)P(3/2)) states with [2 + 1] resonance enhanced multiphoton ionization (REMPI) on the imaging apparatus. We also detect the velocity distribution of the subset of the nascent momentum-matched CD(2)CD(2)OH cofragments that are formed stable to subsequent dissociation. Invoking conservation of momentum and conservation of energy and a recently developed impulsive model, we determine the vibrational energy distribution of the nascent CD(2)CD(2)OH radicals from the measured velocity distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.