The long‐term surface water balance over land is described by the partitioning of precipitation (P) into runoff and evapotranspiration (ET), and is commonly characterized by the ratio ET/P. The ratio between potential evapotranspiration (PET) and P is explicitly considered to be the primary control of ET/P within the Budyko framework, whereas all other controls are often integrated into a single parameter, ω. Although the joint effect of these additional controlling factors of ET/P can be significant, a detailed understanding of them is yet to be achieved. This study therefore introduces a new global data set for the long‐term mean partitioning of P into ET and runoff in 2,733 catchments, which is based on in situ observations and assembled from a systematic examination of peer‐reviewed studies. A total of 26 controls of ET/P that are proposed in the literature are assessed using the new data set. Results reveal that: (i) factors controlling ET/P vary between regions with different climate types; (ii) controls other than PET/P explain at least 35% of the ET/P variance in all regions, and up to ∼90% in arid climates; (iii) among these, climate factors and catchment slope dominate over other landscape characteristics; and (iv) despite the high attention that vegetation‐related indices receive as controls of ET/P, they are found to play a minor and often nonsignificant role. Overall, this study provides a comprehensive picture on factors controlling the partitioning of P, with valuable insights for model development, watershed management, and the assessment of water resources around the globe.
In mountainous regions, rainfall plays a key role in water supply for millions of people. However, rainfall data for these sites are limited and generally of low quality, making it difficult to evaluate the nature, amount, and timing of rainfall. This is particularly true for the páramo, a high-elevation grassland in the northern Andes that is a primary source of water for large populations in Ecuador, Colombia, and Venezuela. In this study, high-resolution laser disdrometer data and standard tipping-bucket rain gauge data were used to improve knowledge of rainfall in the páramo. For 36 months, rainfall was monitored in a high-elevation (3780 m MSL) headwater catchment in southern Ecuador. Average annual rainfall during this period was 1345 mm. Results indicate that (i) when input from very low–intensity events (drizzle) is taken into account, rainfall is 15% higher than previously thought; (ii) rainfall occurs throughout the year (only approximately 12% of the days are dry); (iii) rainfall occurs primarily as drizzle (80% of rainfall duration), which accounts for 29% of total rainfall amount; and (iv) the timing and average intensity of rainfall varies throughout the year (shorter afternoon events are common from October to May, whereas longer night events—with lower intensities—are more frequent from June to September). Although some of these numbers may vary regionally, the results contribute to a better understanding of rainfall in the wet Andean páramo.
In Europe, three widespread extreme summer drought and heat (DH) events have occurred in 2003, 2010 and 2018. These events were comparable in magnitude but varied in their geographical distribution and biomes affected. In this study, we perform a comparative analysis of the impact of the DH events on ecosystem CO 2 fluxes over Europe based on an ensemble of 11 dynamic global vegetation models (DGVMs), and the observation-based FLUXCOM product. We find that all DH events were associated with decreases in net ecosystem productivity (NEP), but the gross summer flux anomalies differ between DGVMs and FLUXCOM. At the annual scale, FLUXCOM and DGVMs indicate close to neutral or above-average land CO 2 uptake in DH2003 and DH2018, due to increased productivity in spring and reduced respiration in autumn and winter compensating for less photosynthetic uptake in summer. Most DGVMs estimate lower gross primary production (GPP) sensitivity to soil moisture during extreme summers than FLUXCOM. Finally, we show that the different impacts of the DH events at continental-scale GPP are in part related to differences in vegetation composition of the regions affected and to regional compensating or offsetting effects from climate anomalies beyond the DH centres. This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.
Future changes in multidecadal mean water availability, represented as the difference between precipitation and evapotranspiration, remain highly uncertain in ensemble simulations of climate models. Here we identify a physically meaningful relationship between present‐day mean precipitation and projected changes in water availability. This suggests that the uncertainty can be reduced by conditioning the ensemble on observed precipitation, which is achieved through a novel probabilistic approach that uses Approximate Bayesian Computation. Comparing the constrained with the full ensemble shows that projected extreme changes in water availability, denoted by the 5th and 95th percentile of the full ensemble, are less likely over 73% and 63% of land, respectively. There is also an overall shift toward wetter conditions over Europe, Southern Africa, and Western North America, whereas the opposite occurs over the Amazon. Finally, the constrained projections support adaptation to shifts in regional water availability as imposed by different global warming levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.