Gonadal hormones are important mediators of sexual and aggressive behavior in vertebrates. Recent evidence suggests that the peptide hormones arginine vasotocin (AVT) and its mammalian homologue arginine vasopressin (AVP) often critically mediate these gonadal hormone effects on behavior and have direct influences on behavioral variation. Behavioral differences between sexes, across reproductive states, and even among closely related species are correlated with differences in central AVT/AVP systems in many species. We report differences in hypothalamic AVT mRNA levels between distinct alternate male phenotypes and with female-to-male sex change in the bluehead wrasse (Thalassoma bifasciatum), a teleost fish. The aggressively dominant and strongly courting male phenotype has greater numbers of AVT mRNA producing cells in the magnocellular preoptic area of the hypothalamus than females. Levels of AVT mRNA within these cells in dominant males are also approximately three times female levels whereas the non-aggressive male phenotype has AVT mRNA levels approximately twice female levels. Behavioral sex change is very rapid in this species and is not dependent on the presence of gonads. Conversely, rapid increases in sexual and aggressive behavior during sex change are closely paralleled by approximate fourfold increases in hypothalamic AVT-mRNA levels. The behavioral plasticity shown by bluehead wrasses in response to social environment might be mediated in part by a neuropeptide, AVT, with changes in the gonads and gonadal hormones as the result rather than the cause of behavioral dominance.
Abstract. While it is widely recognized that the manner in which organisms adjust their timing of reproduction reflects evolutionary strategies aimed at minimizing offspring mortality or maximizing reproductive output, the conditions under which the evolutionarily stable strategy involves synchronous or asynchronous reproduction is a matter of considerable discord. A recent theoretical model predicts that whether a population displays reproductive synchrony or asynchrony will depend on the relative scales of intrinsic regulation and environmental disturbance experienced by reproducing individuals. This model predicts that, under conditions of negligible competition and large-scale environmental perturbation, evolution of a single mixed strategy will result in asynchronous reproduction. We tested this prediction using empirical data on large-scale climatic fluctuation and the annual timing of reproduction by three species of flowering plants covering 1300-population-years and four degrees of latitude in Norway. In agreement with model predictions, within populations of all three species reproductive asynchrony increased with the magnitude of large-scale climatic perturbation, but bore no relation to the strength of local density dependence. These results suggest that mixed evolutionarily stable strategies can arise from the interplay of combinations of agents of selection and the scale at which they operate; hence it is fruitless to associate synchronous versus asynchronous timing with particular single factors like climate, competition, or predation. An aspect of life-history theory that has received considerable focus in both empirical and theoretical studies is the evolution of the timing and synchrony of reproduction. This undoubtedly reflects the widespread observation that timing of reproduction is a strong determinant of offspring viability and reproductive success both in animals (Lack 1950; Berger 1992;Landa 1992;Brinkhof et al. 1993;Sih and Moore 1993;Trites and Antonelis 1994;Olsson and Shine 1997; Bowyer et al. 1998;Post and Klein 1999) and plants (Janzen 1976;Harper 1977;Dieringer 1991;Young and Augspurger 1991;Domínguez and Dirzo 1995). However, the conditions under which the evolutionarily stable strategy (ESS) of the timing of reproduction involves synchrony or asynchrony within populations is a matter of debate.For example, synchronous reproduction may be favored in both seasonal and aseasonal environments, depending on whether natural selection operates on the entrainment of individuals within the population to environmental cues (resulting in an optimal date of reproduction), or whether competition and predation are important agents of offspring mortality (Ims 1990). Reproductive synchrony is not the only ESS in seasonal environments, however, because asynchronous reproduction can also be favored in seasonal environments if competition reduces both food availability and neonatal growth (Iwasa 1991;Ezoe 1995).This disparity of views on factors shaping the timing and synchrony of reproduction h...
Several recent studies suggest that interactions with conspecific males can reduce the longevity of female Drosophila melanogaster or support the idea that male and female fitness components are involved in antagonistic interactions. Here we report that males from third-chromosome isogenic lines demonstrated significant genetic variation in male reproductive performance and in the longevity of their mates. Increased male performance was marginally significantly associated with one measure of increased female survival rate. However, there was no indication of tradeoffs or negative correlations between male reproductive success and female survival. We discuss alternative hypotheses for the cause of the induced variation in female longevity.
Three loci in the genome of the white-footed mouse, Peromyscus leucopus, were examined for the presence or absence of orthologous copies of the retrovirus-like element mys using polymerase chain reaction. We examined these loci in 28 mice collected throughout the P. leucopus species range. Mys insertions were present in only one of the individuals examined at the mys-1 and mys-7 loci. Conversely, the mys-6 element was found in several individuals, but the presence of this element was limited to northern latitudes. Because the long terminal repeats (LTRs) of a given element are expected to be identical at the time of retrotransposition into the genome, and to accumulate changes over evolutionary time, within-element LTR sequence comparisons can be used to estimate the relative age of insertions. Within-element LTR differences are greater in mys-6 than in mys-1 or mys-7. The LTRs from orthologous mys-6 elements of six mice were sequenced. The alignment revealed 13 of the 22 differences between the right and left LTRs that were shared by all orthologous mys-6 sites, suggesting that relative to its time of insertion into the genome, mys-6 has only recently spread across the northern part of the species range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.