IntroductionA challenge in the engineering of auto-adjusting prosthetic sockets is to maintain stable operation of the control system while users change their bodily position and activity. The purpose of this study was to test the stability of a socket that automatically adjusted socket size to maintain fit. Socket release during sitting was conducted between bouts of walking.MethodsAdjustable sockets with sensors that monitored distance between the liner and socket were fabricated. Motor-driven panels and a microprocessor-based control system adjusted socket size during walking to maintain a target sensed distance. Limb fluid volume was recorded continuously. During eight sit/walk cycles, the socket panels were released upon sitting and then returned to position for walking, either the size at the end of the prior bout or a size 1.0% larger in volume.ResultsIn six transtibial prosthesis users, the control system maintained stable operation and did not saturate (move to and remain at the end of the actuator’s range) during 98% of the walking bouts. Limb fluid volume changes generally matched the panel position changes executed by the control system.ConclusionsStable operation of the control system suggests that the auto-adjusting socket is ready for testing in users’ at-home settings.
Liner-to-socket distance measurement using inductive sensing may be an effective means to continuously monitor socket fit in people using trans-tibial prostheses. A practical limitation, however, is a means to incorporate a thin uniform-thickness layer of conductive or magnetically permeable target material into the wide range of prosthetic liner products that people with limb amputation commonly use. In this paper, a method is presented whereby a 0.50-mm thickness ferrous polymer made from a SEEPS polymer and iron powder that is formed adjacent to a 0.25-mm thick non-ferrous layer of SEEPS polymer is assembled between two sheets of elastic fabric material. Bench testing showed that the fabrication procedure achieved a root-mean-square error in the thickness of this construct of 58 μm, helping to create a consistent calibration result over the entire surface. The original fabric backing of an off-the-shelf prosthetic liner was removed and replaced with the developed construct. When worn in the shoe of an able-bodied participant for 7.5 h per day for 28 days, the sensor well maintained the shape of its calibration curve at the start of wear, but a distance offset (shifting of the y-intercept) was introduced that increased during the initial approximately 12 days of wear. When the distance offset was corrected, for the primary distance range of clinical interest for this application (0.00–5.00 mm), the sensor maintained its calibration within 4.4%. Before being used in clinical application for liner-to-socket distance monitoring, new ferrous liners may need to be pre-worn so as to achieve a consistent distance reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.