GMC-QDPTGMCJ. Comput. Chem. Jpn., Vol. 13, No. 1, pp. 32-42 (2014
GMC-QPDT
GMC-QDPT3E 4E [PtCln] 2 − (n = 4, 6) d-d Table 3 87.4% 80.0 82.3% Table 5 GMC-PT GMC-PT 3.2 [2] H. Nakano, J. Chem. Phys., 99, 7983 (1993). [CrossRef] [3] H. Nakano, Chem. Phys. Lett., 207, 372 (1993).
I2[CrossRef][4] K. Hirao, Chem. Phys. Lett., 190, 374 (1992). [CrossRef] [5] K. Hirao, Chem. Phys. Lett., 196, 397 (1992). [CrossRef] [6] I. Shavitt, L. R. Redmon, J. Chem. Phys., 73, 5711 (1980), and references therein. [CrossRef] [7] K. Freed, Lecture Notes in Chemistry (Springer, Berlin, 1989), Vol. 52, p. 1, and references therein.[8] H. Nakano, R. Uchiyama, K. Hirao, J. Comput. Chem., 23, 1166(2002. [Medline] [CrossRef][9] M. J. Vilkas, K. Koc, Y. Ishikawa, Chem. Phys. Lett., 296, 68 (1998). [CrossRef] [10] R. K. Chaudhuri, K. F. Freed, J. Chem. Phys., 122, 204111 (2005) The four-component relativistic general multiconfigurational quasidegenerate perturbation theory (GMC-QDPT) and its applications to some atomic and molecular systems are reviewed. An efficient and accurate approximation to the relativistic GMC-QDPT is also presented. In the approximation, the terms including core to virtual excitations in the second-order effective Hamiltonian are replaced with those of the conventional quasidegenerate perturbation theory.The approximation form, which we call semi-approximate second-order form, is applied to some molecular systems.The computed excitation energies and potential energy curves were in good agreement with the original GMC-QDPT values as well as available experimental data.