Acquiring information related to the surrounding environment and environmental mapping are important issues for realizing autonomous robot movement in an unknown environment, and these processes require position estimations for self-localization. We have conducted previous research related to self-localization in indoor environments through baseboard recognition. In that method, a mobile robot performs self-localization using camera-acquired images, from which the intersection of baseboards and the vertical lines of attached doorframes are registered as landmarks. However, this method is limited in that self-localization cannot be performed in cases where baseboards are not partially available or where walls and baseboards are the same color. The present research aims at addressing these issues and implementing the method in an actual mobile robot. The implementing robot is allowed to move autonomously, performing mapping and self-localization in real time. Addressing the problem of same-colored walls requires identification of the border between the wall and the baseboard, so we propose an image processing method for identifying these lines. The problem of lack of baseboards is solved through supplemental use of odometry, which does not rely on visual characteristics. The proposed method is experimentally verified through use of our algorithm to recognize baseboards, perform self-localization, and create maps. The results verify that baseboards can be recognized even when they are the same color as walls. We furthermore verify that landmark-mapping performance when moving in hallways is improved over the previous version.
Various studies have been conducted regarding road obstacle detection and avoidance, but very few studies deal with the detection and avoidance of obstacles that suddenly and unexpectedly appear during vehicle operation. Therefore, we have been conducting studies on problem of detecting suddenly and unexpectedly appear obstacles. As an extension stage of those studies, this paper presents about automatic smooth stopping of vehicle using a fuzzy control system. The proposed system conducts stopping control of the vehicle depending on the distance to the obstacle and vehicle speed when obstacle is detected. The simulation experiments and actual experiments using a mobile robot on behalf of a vehicle were conducted regarding the proposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.