To achieve fine visualization of the peripheral microvascular networks, we have developed a photoacoustic (PA) microscope equipped with a four-channel annular array transducer. The quality of PA images processed with Delay-and-Sum (DAS) method is degraded by off-axis signals. Thus, to achieve higher image quality for the PA microscope, this study evaluated the efficacy of the five coherence factor weighting methods: coherence factor, sign coherence factor, phase coherence factor, circular coherence factor, and vector coherence factor. Using PA signals acquired from a 100 µm microtube and the skin microvessels, we generated PA images with DAS and one of the weighting methods, and quantitatively evaluated the image quality by calculating the sharpness, contrast ratio, and contrast-to-noise ratio. The results showed the phase coherence factor and the vector coherence factor methods were more effective to clearly visualize the microvascular structure, in terms of vessel sharpening and noise suppression performances, than the other methods.
Skin aging is characterized by color and wrinkle caused by degeneration of collagen and elastin in the dermis. Recently, the volume, diameter and branching of the micro vessels in the skin are proved to affect these biomechanical changes. Thus, high resolution imaging for both micro structure and micro vessels of the skin is desired. In the present study, dual-wavelength photoacoustic microscope (PAM) combined with high frequency ultrasound (HFUS) is developed to visualize both the morphology and microcirculation of the skin. Two Nd:YAG laser light sources with the wavelength of 532/556 nm, pulse width of 1.2/3.6 ns, pulse energy of 16 µJ/pulse and repetition rate of 1 kHz were equipped in the HFUS-PAM system. The optical fiber for laser delivery was inserted through the center hole of the concave ultrasound transducer with the central frequency of 75 MHz. Both HFUS and PA signals were acquired at the sampling rate of 500 MHz and the resolution of 12 bits. The transducer was scanned by voice coil actuators to obtain 3D dataset of HFUS and PA signals. Oxygen saturation of the micro circulation was calculated by the PA signals alternately obtained at 532 nm and 556 nm. 3D image of the layered structure and the micro vessels representing oxygen saturation in the 6 mm x 6 mm x 3 mm volume of the skin was successfully obtained with the system. HFUS-PAM will provide important information of skin morphology and microcirculation for assessment of skin aging.
Photoacoustic (PA) imaging is a hybrid imaging technique with light-dependent contrast and ultrasound-dependent depth. In previous studies, the interest of PA imaging was mainly clinical research. However, in recent years, PA imaging that targets cells also has attracted attention. Cells are the smallest unit in our body, and cell abnormalities cause various diseases. Therefore, PA imaging of cells is important for elucidating the relationship between diseases and PA properties and linking the results to the clinical application of PA imaging. For PA imaging of cells and its internal structures, sub-micron lateral resolution is required. In this study, we have developed an optical resolution photoacoustic microscopy (OR-PAM) system using a high NA objective lens and a single-mode fiber to achieve sub-micron lateral resolution. With the OR-PAM, it was confirmed that the lateral resolution was better than 700 nm, and the characteristic shapes of red blood cells and melanoma cells could be visualized.
Optical resolution photoacoustic microscopy (OR-PAM) is a remarkable biomedical imaging technique that can selectively visualize microtissues with optical-dependent high resolution. However, traditional OR-PAM using mechanical stages provides slow imaging speed, making it difficult to biologically interpret in vivo tissue. In this study, we developed a high-speed OR-PAM using a recently commercialized MEMS mirror. This system (MEMS-OR-PAM) consists of a 1-axis MEMS mirror and a mechanical stage. Furthermore, this study proposes a novel calibration method that quickly removes the spatial distortion caused by fast MEMS scanning. The proposed calibration method can easily correct distortions caused by both the scan geometry of the MEMS mirror and its nonlinear motion by running an image sequence only once using a ruler target. The combination of MEMS-OR-PAM and distortion correction method was verified using three experiments: (1) leaf skeleton phantom imaging to test the distortion correction efficacy; (2) spatial resolution and depth of field (DOF) measurement for system performance; (3) in-vivo finger capillary imaging to verify their biomedical use. The results showed that the combination could achieve a high-speed (32 s in 2 × 4 mm) and high lateral resolution (~ 6 µm) imaging capability and precisely visualize the circulating structure of the finger capillaries.
The imaging of microvasculature of the synovial membrane is important for the early detection of rheumatoid arthritis (RA). Photoacoustic (PA) imaging is an imaging modality that is compatible with the advantages of high spatial resolution in optical imaging and high penetration depth in ultrasound imaging. Linear probes are mainly used in clinical PA imaging. However, it is difficult for linear probes to acquire the PA signal completely from a point sound source in tissue because the area for signal reception is limited. In the present study, high resolution PA imaging as proposed by receiving the PA signals with linear probes placed at multiple angles around the imaging target to generate a compound PA image. The proposed method was compared to the conventional method with a single linear probe by computer simulation and measurement. The proposed method showed significant improvement of resolution and contrast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.