The pore size of mesoporous silica is precisely controlled by repeated surface treatment with tetramethyl orthosilicate (TMOS) and water. This surface treatment produces a silica monolayer by reaction between surface hydroxy groups and TMOS, and successive water treatment regenerates the surface silanol groups ready for further TMOS modification. This treatment method reduces the pore size of SBA-15 mesoporous silica incrementally by ca. 0.5 nm per treatment step, while preserving the original hexagonal pore structure.
The hobbing finish of hard gear teeth such as case-hardened gears is anticipated for practical use in high efficiency production. We studied wear and finished surface properties in cutting tests using a cubic boron nitride (cBN) hob cutter in high-speed cutting at 900 m/min of case-hardened steel. The cBN content in tip ingredients is related to wear, and tips high in cBN content are superior in wear resistance. The high thermal conductivity of cBN tips helps transfer cutting temperature heat to chips, melting and adhering them to the relief surface. Flaking may occur on the cutting edge but new chipping does not occur although chipping may exist after grinding. Finished surface roughness is influenced by horning on the cutting edge. Round horning leads to a smooth surface. High-speed finishing with cBN-tipped hobs is analyzed in view of cBN tip grinding and finished surface properties, in addition to wear properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.