While investigating polishing mechanism of glass substrates with ceria abrasives (CeO2), we found its oxidizing properties worked effectively for the polishing. This finding has inspired us to speculate about the possibility of the manganese oxide abrasives as an alternative for ceria as they also have oxidizing properties. Therefore, focusing on the valence of the manganese, we have experimentally manufactured MnO, MnO2, Mn2O3 and Mn3O4 abrasives, and conducted a comparison study of the characteristics obtained with ceria slurry and manganese oxide slurries. As a result, the surface roughness of below Ra 0.8nm obtained with Mn2O3 slurry was found better than that with the conventional ceria slurry, on top of which, its removal rate was as good as or equal to that of ceria. Using a novel, closed type CMP (Chemical Mechanical Polishing) machine, we conducted another glass polishing experiment with ceria and manganese oxide slurries. The inside of the CMP machine was filled with high-pressure gases such as oxygen, air and nitrogen and kept at 500kPa to make the polishing environment radical. Through this experiment, we found an effective polishing method for high-quality surface. The removal rates were several times better than that of the conventional polishing performed in an open CMP machine.
We designed and manufactured a prototype of a unique CMP machine, which can perform double-side CMP simultaneously in a sealed and pressure container as regarding effective action of the processing atmosphere around workpieces as important. Polishing experiments with single crystal silicon (Si) wafers (100) are performed by charging the container with various gases. As a result, the removal rates increased by up to 25% under high pressure oxygen gas atmosphere.
With an aim to reduce the consumption of cerium oxide (CeO2) used in large quantity for the polishing of glass substrates applied for HDD and display, we have attempted to obtain the processing characteristics of glass substrates by CeO2 slurry. We also paid attention to manganese oxide abrasives to replace cerium oxide abrasives.
As a result, we have found Mn2O3 abrasives potential to replace disappearing CeO2 for the polishing of glass substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.