Enantiomers of bulky percyclohexylmethyl-substituted pillar[5]arene (Cy-C1-Pillar) were able to be separated by chiral column chromatography, and the separated enantiomers did not racemize. Even though modified with the bulky cyclohexylmethyl-substituents at both rims, Cy-C1-Pillar was able to capture a guest molecule.
A thermoresponsive macromolecule consisting of 10 outer triethylene oxide groups and a pillar[5]arene core was prepared. The macromolecule showed lower critical solution temperature behavior. Moreover, its clouding point can be reversibly tuned based on the addition of guest and host compounds; the clouding point increased upon addition of a guest didecylviologen salt and decreased when the competitive host cucurbit[7]uril was added.
Introduction of bulky substituents such as benzyl and pyrenyl groups using click reactions inhibited or slowed the rotation of the units on the NMR chemical shift timescale. The perpyrenylated pillar[5]arene showed a thermally-responsive excimer emission, but a unit model of the perpyrenylated pillar[5]arene did not exhibit such a response.
We synthesized chiral-substituents modified pillar[5]arene for the first time. The chiral-substituents modified pillar[5]arene showed planar chirality and interconversion between (pS) and (pR) forms took place quickly. The planar chirality was switched by temperature, solvents, and addition of achiral guest. As the measurement temperature increased, the diastereomeric excess was decreased. The diastereomeric excesses were high in low-permittivity solvents, while a low diastereomeric excess was observed in high-permittivity solvents. Addition of achiral guest induced an increase of negative CD intensities.
We developed "cyclic host liquids (CHLs)" as a new type of solvent. The CHLs are a nonvolatile liquid over a wide temperature range, are biocompatible and recyclable, have high thermal stability, and are miscible with many organic solvents. Compared with typical complexation systems, the CHL system is extremely efficient for maintaining host-guest complexation because an additional solvent is not required. Based on the efficient host-guest complexation in the CHL system, we demonstrated synthesis of [2]rotaxanes in pillar[5]arene-based CHL. High yields were obtained for [2]rotaxanes capped by cationization (yield 91%) and Huisgen reaction (yield 88%) between the axle and the stopper components in the CHL system, while the association constants between the axles and wheels were quite low (10-15 M(-1)) in CDCl(3). The CHL system provides a new powerful approach for synthesis of mechanically interlocked molecules (MIMs) even with unfavorable statistical combinations of host-guest complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.