We study the generation of a self-chirped optical pulse in a free-electron laser (FEL) oscillator. In a high-gain FEL oscillator, the frequency chirp is induced in the slippage region as a result of superradiant FEL resonance, and this time-frequency correlation evolves continuously into a few-cycle regime, if the optical cavity length is perfectly synchronized to the electron bunch interval. Numerical simulations based on the slowly evolving wave approximation and experimental results are presented.
We perform a proof-of-principle experiment for a nondestructive method for detecting the elemental and isotopic composition of materials concealed by heavy shields such as iron plates with a thickness of several centimeters. This method uses nuclear resonance fluorescence (NRF) triggered by an energy-tunable laser-Compton scattering (LCS) -ray source. One-dimensional mapping of a lead block hidden behind 1.5-cm-thick iron plates is obtained by measuring an NRF -ray of a lead isotope 208 Pb. We observe a 5512-keV -ray from 208 Pb excited by the quasi-monochromatic LCS -rays with energies up to 5.7 MeV. The edge position of the lead block is consistent with the exact position within the uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.