To investigate the prevalence and causes of diabetes in patients with primary aldosteronism (PA) in a multi-institutional cohort study in Japan. RESEARCH DESIGN AND METHODS The prevalence of diabetes was determined in 2,210 patients with PA (diagnosed or glycated hemoglobin [HbA 1c ] ‡6.5% [ ‡48 mmol/mol]; NGSP) and compared with that of the Japanese general population according to age and sex. In 1,386 patients with PA and clear laterality (unilateral or bilateral), the effects of plasma aldosterone concentration (PAC), hypokalemia (<3.5 mEq/L), suspected subclinical hypercortisolism (SH; serum cortisol ‡1.8 mg/dL after 1-mg dexamethasone suppression test), and PA laterality on the prevalence of diabetes or prediabetes (5.7% £ HbA 1c <6.5% [39 mmol/mol £ HbA 1c <48 mmol/mol]) were examined. RESULTS Of the 2,210 patients with PA, 477 (21.6%) had diabetes. This prevalence is higher than that in the general population (12.1%) or in 10-year cohorts aged 30-69 years. Logistic regression or x 2 test revealed a significant contribution of suspected SH to diabetes. Despite more active PA profiles (e.g., higher PAC and lower potassium concentrations) in unilateral than bilateral PA, BMI and HbA 1c values were significantly higher in bilateral PA. PA laterality had no effect on the prevalence of diabetes; however, the prevalence of prediabetes was significantly higher in bilateral than unilateral PA. CONCLUSIONS Individuals with PA have a high prevalence of diabetes, which is associated mainly with SH. The prevalence of prediabetes is greater for bilateral than unilateral PA, suggesting a unique metabolic cause of bilateral PA.
Aims/IntroductionIn treatment algorithms of type 2 diabetes mellitus in Western countries, biguanides are recommended as first‐line agents. In Japan, various oral hypoglycemic agents (OHAs) are available, but prescription patterns are unclear.Materials and MethodsData of 7,108 and 2,655 type 2 diabetes mellitus patients in study 1 and study 2, respectively, were extracted from the Medical Data Vision database (2008–2013). Cardiovascular disease history was not considered in study 1, but was in study 2. Initial choice of OHA, adherence to its use, effect on glycated hemoglobin levels for 2 years and the second choice of OHA were investigated.ResultsIn study 1, α‐glucosidase inhibitor, glinide and thiazolidinedione were preferentially medicated in relatively lower glycated hemoglobin cases compared with other OHAs. The two most prevalent first prescriptions of OHAs were biguanides and dipeptidyl peptidase‐4 inhibitors, and the greatest adherence was for α‐glucosidase inhibitors. In patients treated continuously with a single OHA for 2 years, improvement in glycated hemoglobin levels was greatest for dipeptidyl peptidase‐4 inhibitors. As a second OHA added to the first OHA during the first 2 years, dipeptidyl peptidase‐4 inhibitors were chosen most often, especially if a biguanide was the first OHA. In study 2, targeting patients with a cardiovascular disease history, a similar tendency to study 1 was observed in the first choice of OHA, adherence and the second choice of OHA.ConclusionsEven in Japanese type 2 diabetes mellitus patients, a Western algorithm seems to be respected to some degree. The OHA choice does not seem to be affected by a cardiovascular disease history.
IntroductionRecently, the pleiotropic benefits of incretin-based therapy have been reported. We have previously reported that Exendin–4, a glucagon-like peptide–1 (GLP–1) receptor agonist, attenuates prostate cancer growth. Metformin is known for its anti-cancer effect. Here, we examined the anti-cancer effect of Exendin–4 and metformin using a prostate cancer model.MethodsProstate cancer cells were treated with Exendin–4 and/or metformin. Cell proliferation was quantified by growth curves and 5-bromo–2′-deoxyuridine (BrdU) assay. TUNEL assay and AMP-activated protein kinase (AMPK) phosphorylation were examined in LNCaP cells. For in vivo experiments, LNCaP cells were transplanted subcutaneously into the flank region of athymic mice, which were then treated with Exendin–4 and/or metformin. TUNEL assay and immunohistochemistry were performed on tumors.ResultsExendin–4 and metformin additively decreased the growth curve, but not the migration, of prostate cancer cells. The BrdU assay revealed that both Exendin–4 and metformin significantly decreased prostate cancer cell proliferation. Furthermore, metformin, but not Exendin–4, activated AMPK and induced apoptosis in LNCaP cells. The anti-proliferative effect of metformin was abolished by inhibition or knock down of AMPK. In vivo, Exendin–4 and metformin significantly decreased tumor size, and further significant tumor size reduction was observed after combined treatment. Immunohistochemistry on tumors revealed that the P504S and Ki67 expression decreased by Exendin–4 and/or metformin, and that metformin increased phospho-AMPK expression and the apoptotic cell number.ConclusionThese data suggest that Exendin–4 and metformin attenuated prostate cancer growth by inhibiting proliferation, and that metformin inhibited proliferation by inducing apoptosis. Combined treatment with Exendin–4 and metformin attenuated prostate cancer growth more than separate treatments.
Incretin therapy has emerged as one of the most popular medications for type 2 diabetes. We have previously reported that the dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin attenuates neointima formation after vascular injury in non-diabetic mice. In the present study, we examined whether combined treatment with linagliptin and the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin attenuates neointima formation in diabetic mice after vascular injury. Diabetic db/db mice were treated with 3 mg/kg/day linagliptin and/or 30 mg/kg/day empagliflozin from 5 to 10 weeks of age. Body weight was significantly decreased by empagliflozin and the combined treatment. Blood glucose levels and glucose tolerance test results were significantly improved by empagliflozin and the combined treatment, but not by linagliptin. An insulin tolerance test suggested that linagliptin and empagliflozin did not improve insulin sensitivity. In a model of guidewire-induced femoral artery injury in diabetic mice, neointima formation was significantly decreased in mice subjected to combined treatment. In an in vitro assay using rat aortic smooth muscle cells (RASMC), 100, 500, or 1000 nM empagliflozin significantly decreased the RASMC number in a dose-dependent manner. A further significant reduction in RASMC proliferation was observed after combined treatment with 10 nM linagliptin and 100 nM empagliflozin. These data suggest that combined treatment with the DPP-4 inhibitor linagliptin and SGLT2 inhibitor empagliflozin attenuates neointima formation after vascular injury in diabetic mice in vivo and smooth muscle cell proliferation in vitro .
Cancer is currently one of the major causes of death in patients with type 2 diabetes mellitus. We previously reported the beneficial effects of the glucagon-like peptide-1 receptor agonist exendin-4 against prostate and breast cancer. In the present study, we examined the anti-cancer effect of the sodium-glucose cotransporter 2 (SGLT2) inhibitor ipragliflozin using a breast cancer model. In human breast cancer MCF-7 cells, SGLT2 expression was detected using both RT-PCR and immunohistochemistry. Ipragliflozin at 1-50 μM significantly and dose-dependently suppressed the growth of MCF-7 cells. BrdU assay also revealed that ipragliflozin attenuated the proliferation of MCF-7 cells in a dose-dependent manner. Because the effect of ipragliflozin against breast cancer cells was completely canceled by knocking down SGLT2, ipragliflozin could act via inhibiting SGLT2. We next measured membrane potential and whole-cell current using the patch clamp technique. When we treated MCF-7 cells with ipragliflozin or glucose-free medium, membrane hyperpolarization was observed. In addition, glucose-free medium and knockdown of SGLT2 by siRNA suppressed the glucose-induced whole-cell current of MCF-7 cells, suggesting that ipragliflozin inhibits sodium and glucose cotransport through SGLT2. Furthermore, JC-1 green fluorescence was significantly increased by ipragliflozin, suggesting the change of mitochondrial membrane potential. These findings suggest that the SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation via membrane hyperpolarization and mitochondrial membrane instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.