The current drivability of III‐V double gate MOSFETs with various channel materials are investigated by using quantum‐corrected Monte Carlo simulation. The InGaAs channel shows the largest electron injection velocity vinj. However, the backward currents by alloy scattering (AL) in the channel and by non‐polar optical phonon scattering (NPOP) in the drain decrease the average electron velocity vs from vinj even at Lg of 10 nm. In the GaAs channel, in addition to the decrease in vinj by the L valleys conduction, NPOP and polar optical phonon scattering (POP) cause the backward currents, which decrease vs further from vinj. The InP channel shows the smallest vinj, however, the backward current by POP in the channel is small and that by NPOP in the drain is almost negligible. Therefore vs is almost reaching vinj at Lg of 10 nm. On the other hand, the electron density nb is largest in the InP channel owing to the large Cgs. Eventually, the InP channel shows the largest Ids. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.