Technological devices have become deeply embedded in people's lives, and their demand is growing every year. It has been indicated that outsourcing the design and manufacturing of integrated circuits, which are essential for technological devices, may lead to the insertion of malicious circuitry, called hardware Trojans (HTs). This paper proposes an HT detection method at gate-level netlists based on XGBoost, one of the best gradient boosting decision tree models. We first propose the optimal set of HT features among many feature candidates at a netlist level through thorough evaluations. Then, we construct an XGBoost-based HT detection method with its optimized hyperparameters. Evaluation experiments were conducted on the netlists from Trust-HUB benchmarks and showed the average F-measure of 0.842 using the proposed method. Also, we newly propose a Trojan probability propagation method that effectively corrects the HT detection results and apply it to the results obtained by XGBoost-based HT detection. Evaluation experiments showed that the average F-measure is improved to 0.861. This value is 0.194 points higher than that of the existing best method proposed so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.