These results suggest that use of slow degradation-type bFGF-gelatin hydrogel complex may accelerate bone regeneration around fenestrated implants at an early stage of bone regeneration.
Inorganic polyphosphate (poly(P)) is recognized as a therapeutic agent that promotes fibroblast growth factor and enhances osteogenic differentiation, and in vivo, when adsorbed onto interconnected porous calcium hydroxyapatite (IP-CHA) enhances bone regeneration. The present study focused on the effect of poly(P) adsorbed onto IP-CHA granules (Poly(P)/IP-CHA) in guided bone regeneration (GBR). Dental implants were placed into the edentulous mandibular areas of five Beagle-Labrador hybrid dogs with screw expose on the buccal side, and then bone defects were filled Poly(P)/IP-CHA (test) or IP-CHA (control). After 12 weeks, histological evaluation and histomorphometrical analysis were performed. Newly-bone formation around exposed implant screw was clearly detected in the test-group. The ratio for regenerated bone height in the test group versus the control-group was 85.6±20.2 and 62.6±23.8, respectively, with no significant difference, while, that for bone implant contact was significantly higher (67.9±11.8 and 48.8±14.1, respectively). These findings indicate that Poly(P)/IP-CHA enhances bone regeneration in GBR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.