Implemented in road transport enterprises (RTEs) on a large scale, telematics systems are dedicated both to the particular aspects of their operation and to the integrated fields of the total operational functioning of such entities. Hence, a research problem can be defined as the identification of their efficiency levels in the context of operational activities undertaken by RTEs (including more holistic effects, e.g., lowering fuel/energy consumption and negative environmental impacts). Current research studies refer to the efficiency of some particular modules, but there have not been any publications focused on describing the efficiency of telematics systems in a more integrated (holistic) way, due to the lack of a universal tool that could be applied to provide this type of measurement. In this paper, an attempt at filling the identified cognitive gap is presented through empirical research analysing the original matrix developed by the authors that refers to the efficiency rates of organisational activities undertaken by RTEs. The purpose of this paper is to present a tool that has been designed to provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The results are presented in a form of an individual (ontogenetic) matrix of the analysed companies, for which a determinant was calculated with the use of Sarrus’ rule. Obtained in such a way, the set of values identified for the determinants of the subsequent ontogenetic matrices came as an arithmetic progression that characterised the scope and the level of the influence exerted by the implemented IT (information technology) systems on the organisational efficiency of operational activities undertaken by the analysed RTEs. We present a hypothesis stating that the originally developed matrix can be viewed as a reliable tool used for comparative analysis in the field of efficiency of telematics systems in RTEs, and this hypothesis was positively verified during the research. The obtained results prove the significant potential for the wide application of the discussed matrix, which can be used as a universal tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by RTEs.
Machine learning (ML) is applied in various logistic processes utilizing innovative techniques (e.g., the use of drones for automated delivery in e-commerce). Early challenges showed the insufficient drones’ steering capacity and cognitive gap related to the lack of theoretical foundation for controlling algorithms. The aim of this paper is to present a game-based algorithm of controlling behaviours in the relation between an operator (OP) and a technical object (TO), based on the assumption that the game is logistics-oriented and the algorithm is to support ML applied in e-commerce optimization management. Algebraic methods, including matrices, Lagrange functions, systems of differential equations, and set-theoretic notation, have been used as the main tools. The outcome is a model of a game-based optimization process in a two-element logistics system and an algorithm applied to find optimal steering strategies. The algorithm has been initially verified with the use of simulation based on a Bayesian network (BN) and a structured set of possible strategies (OP/TO) calculated with the use of QGeNie Modeller, finally prepared for Python. It has been proved the algorithm at this stage has no deadlocks and unforeseen loops and is ready to be challenged with the original big set of learning data from a drone-operating company (as the next stage of the planned research).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.