The baculovirus is a classic example of a parasite that alters the behavior or physiology of its host so that progeny transmission is maximized. Baculoviruses do this by inducing enhanced locomotory activity (ELA) that causes the host caterpillars to climb to the upper foliage of plants. We previously reported that this behavior is not induced in silkworms that are infected with a mutant baculovirus lacking its protein tyrosine phosphatase ( ptp ) gene, a gene likely captured from an ancestral host. Here we show that the product of the ptp gene, PTP, associates with baculovirus ORF1629 as a virion structural protein, but surprisingly phosphatase activity associated with PTP was not required for the induction of ELA. Interestingly, the ptp knockout baculovirus showed significantly reduced infectivity of larval brain tissues. Collectively, we show that the modern baculovirus uses the host-derived phosphatase to establish adequate infection for ELA as a virion-associated structural protein rather than as an enzyme.
The silkworm Masculinizer (Masc) gene encodes a CCCH-tandem zinc finger protein that controls both masculinization and dosage compensation. Masc protein is a nuclear protein, but the mechanism underlying the transport of this protein into the nucleus has not yet been elucidated. Here, we identified a functional bipartite nuclear localization signal (NLS) located between residues 274 and 290 of the Masc protein. Sequence comparison revealed that this bipartite NLS is evolutionarily conserved in Masc proteins from other lepidopteran insects. Furthermore, we showed that the degree of nuclear localization is not associated with the masculinizing activity of the Masc protein.
The actin rearrangement-inducing factor 1 (arif-1) gene is a baculoviral early gene conserved in most alphabaculoviruses. Previous studies reported that Autographa californica nucleopolyhedrovirus ARIF-1 protein induces filamentous actin concentration on the plasma membrane during the early stage of infection in Trichoplusia ni TN-368 cells, but its role in larval infection remains unknown. In this study, we performed behavioural screening using Bombyx mori larvae infected with Bombyx mori nucleopolyhedrovirus (BmNPV) mutants and found that larvae infected with arif-1-mutated BmNPVs did not show locomotor hyperactivity that was normally observed in BmNPV-infected larvae. arif-1-deficient BmNPVs also showed reduced pathogenicity and total viral propagation in B. mori larvae, whereas viral propagation of arif-1-deficient viruses was comparable with that of control viruses in B. mori cultured cells. An arif-1-defective BmNPV expressing the GFP gene (gfp) was used to monitor the progression of infection in B. mori larvae. GFP expression and quantitative reverse transcription-PCR analyses revealed that infection by the arif-1-disrupted virus was significantly delayed in trachea, fat body, suboesophageal ganglion and brain. These results indicated that BmNPV ARIF-1 enhanced systemic infection in B. mori larvae.
This study describes the molecular phylogeny, laboratory rearing, and karyotype of a bombycid moth, Trilocha varians (F. Walker) (Lepidoptera: Bombycidae), which feeds on leaves of Ficus spp. (Rosales: Moraceae). The larvae of this species were collected in Taipei city, Taiwan, and the Ryukyu Archipelago (Ishigaki and Okinawa Islands, Japan). Molecular phylogenetic analyses revealed that T. varians belongs to the subfamily Bombycinae, thus showing a close relationship to the domesticated silkworm Bombyx mori (L.), a lepidopteran model insect. A laboratory method was developed for rearing T. varians and the time required for development from the embryo to adult was determined. From oviposition to adult emergence, the developmental zero was 10.47 °C and total effective temperature was 531.2 day—degrees, i.e., approximately 30 days for one generation when reared at 28 °C. The haploid of T. varians consisted of n = 26 chromosomes. In highly polyploid somatic nuclei, females showed a large heterochromatin body, indicating that the sex chromosome system in T. varians is WZ/ZZ (female/male). The results of the present study should facilitate the utilization of T. varians as a reference species for B. mori, thereby leading to a greater understanding of the ecology and evolution of bombycid moths.
The baculovirus VP39 protein is a major nucleocapsid protein essential for viral propagation. However, the critical domains or residues of the VP39 protein have not yet been identified. Here, we performed mutagenesis experiments with Bombyx mori nucleopolyhedrovirus (BmNPV) using 5-bromo-2=-deoxyuridine and isolated a BmNPV mutant that produced fewer occlusion bodies than the wild-type virus. This mutant also produced fewer infectious budded viruses (BVs) than the wildtype virus in both cultured cells and B. mori larvae. Marker rescue experiments using genomic libraries identified a single nucleotide mutation in the vp39 gene. This mutation resulted in an amino acid substitution at glycine 276 (Gly-276) to serine, which was required for all the defective phenotypes observed in the mutant. Sequence comparison revealed that this residue is completely conserved among the VP39 proteins of the sequenced alphabaculoviruses, betabaculoviruses, and gammabaculoviruses. Although early viral gene expression was not significantly affected, the level of expression of a late gene, vcath, was reduced. In addition, two of the very late genes were markedly downregulated in cells infected with this mutant. Western blot and quantitative PCR analyses revealed that the BVs produced from cells infected with this mutant contained smaller amounts of the VP39 protein and viral genomic DNA than those produced from wild-type virus-infected cells. Combined with the results of transmission electron microscopy, VP39 Gly-276 can be concluded to be essential for correct nucleocapsid assembly, viral DNA packaging, and viral gene expression, especially of very late genes. IMPORTANCEThe major nucleocapsid protein gene vp39 is one of the most wellknown baculovirus genes. Although several viral and host proteins that interact with the VP39 protein have been identified, the functionally important domains or residues of this protein remain unknown. The present study revealed that the glycine residue at residue 276, which is completely conserved among sequenced alphabaculoviruses, betabaculoviruses, and gammabaculoviruses, is important for the VP39 function, i.e., structural assembly of nucleocapsids and viral DNA packaging. Moreover, our results provide evidence for the link between nucleocapsid formation and the transcription of viral very late genes.KEYWORDS baculovirus, nucleocapsid, BmNPV, VP39, few polyhedra T he Baculoviridae are a large family of viruses that infect insects, particularly those of the order Lepidoptera. Baculoviruses have a large circular, supercoiled, and doublestranded DNA genome packaged into rod-shaped virions (1, 2). They are divided into four genera, i.e., Alphabaculovirus, Betabaculovirus, Gammabaculovirus, and Deltabaculovirus (3). On the basis of molecular phylogenetic studies using genome sequences, alphabaculoviruses can be further subdivided into group I and II nucleopolyhedroviruses (NPVs) (4). NPVs produce two types of virions during their infection cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.