Effects of environmental variables on the distribution of benthic macroinvertebrates inhabiting sediments were studied at 25 sites along the shoreline of Lake Takkobu in the Kushiro wetland of northern Japan in summer 2003. During the last decade, the lake's status has undergone a drastic shift from clear water dominated by submerged macrophytes to turbid water dominated by phytoplankton. The canonical correspondence analysis showed that four environmental variables explained the significant variation in the macroinvertebrate species composition: submerged plant biomass, bottom sediment organic matter content (OMC), distance from the mouth of the Takkobu River, and bottom-layer pH. Five species of Chironomidae [Chironomus sp. (except plumosus group), Psectrocladius sp., Corynoneura sp., Parachironomus sp. arcuatus group, and Zavreliella sp.] occurred in sites with relatively lower pH and a high submerged plant biomass, whereas three species of Tubificidae (Tubifex tubifex, Aulodrilus limnobius and Aulodrilus sp.) and two of Chironomidae (Nanocladius sp. and Monodiamesa sp.) occurred in sites with high pH and little vegetation. The three Tubificidae species also preferred organic-rich sediments. Irrespective of aquatic vegetation, Sphaerium sp. (Bivalvia) and Monodiamesa sp. (Chironomidae) occurred in low-OMC sites, whereas Tanypus sp. (Chironomidae) preferred high-OMC sites. The number of macroinvertebrate taxa showed the highest correlation with the number of submerged plants, suggesting that macroinvertebrate species richness was related mostly to submerged plant species diversity in this lake. The quantity and species richness of submerged plants and OMC are thus important determinants of the community structure of macroinvertebrates inhabiting sediments in Lake Takkobu.
Non‐biting midges (Diptera: Chironomidae) adapt to species‐specific environmental conditions and hence are promising bioindicators for aquatic and ecotoxicological monitoring. Although their utility for these purposes was historically limited by difficulties in their morphological identification, DNA barcoding offers a possible solution. Here, eight Japanese species of the genus Chironomus, which is characterized by its worldwide distribution and abundance among Chironomidae, were subjected to DNA barcoding using cytochromec oxidase subunit I (COI). To examine whether this DNA barcode is a useful indicator for Japanese species of Chironomus, we calculated genetic distances within and between the COI sequences of Chironomus species both from this study and worldwide and constructed phylogenetic trees. Based on 415 bp COI sequences and the Kimura two‐parameter model, the average genetic distances within 37 species and between 72 species were 2.6% and 17.2%, respectively. Although the ranges of genetic distances within and between species overlapped from 0.8% to 17.3%, 99.7% of average genetic distances between species were >3.0%. Some of this overlap is attributable to distances within species that were “too large” as well as those between species that were “too small”. Of eight Japanese species examined, two showed genetic distances between species that were below a 3.0% threshold, and four had distances within species that were greater than 3.0%. These results suggest a possible reclassification of these species and the need for further sampling to unveil biogeographic variations among different countries and regions.
DNA-sequence-based species delimitation methods were applied to larval chironomid samples collected from 20 Japanese farm ponds. This is the first trial using DNA barcoding to reveal the species composition of chironomid communites in limnological waters. A total of 72 species were delimited from mitochondria DNA cytochrome c oxidase I sequences of the samples. Of these, the number of species delimited from the total sample, bottom sediment sample, and aquatic weed sample of each pond, were 0-21, 0-15 and 3-16, respectively. Greater numbers of collected larvae resulted in more delimited species. Scientific names were assigned for 31 species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.