Double filtration plasmapheresis (DFPP) is a semi‐selective blood purification modality derived from the plasma exchange (PE) modality. In the DFPP treatment, two types of filters with different pore sizes are used: a plasma separator and a plasma component separator. Blood is separated into plasma and blood cells using a plasma separator. The separated plasma is fractionated into large and small molecular weight components by a plasma component separator. Large molecular weight components, including pathogenic substances, are discarded. Small molecular weight components, including valuable substances such as albumin, are returned to the patient. The advantage of DFPP is that the volume of replacement fluid can be significantly reduced compared to PE. By selecting the optimal pore size model for the plasma component separator, DFPP can be applied to various disorders. The clinical applications of DFPP are reviewed based on recent articles on metabolic disorders, organ transplants, rheumatic disorders, neurological disorders, and dermatologic disorders.
Triple-negative breast cancer (TNBC) is an aggressive and highly heterogenous disease with no well-defined therapeutic targets. Treatment options are thus limited and mortality is significantly higher compared with other breast cancer subtypes. Mammary gland tissue-resident macrophages (MGTRMs) are found to be the most abundant stromal cells in early TNBC before angiogenesis. We therefore aimed to explore novel therapeutic approaches for TNBC by focusing on MGTRMs. Local depletion of MGTRMs in mammary gland fat pads the day before TNBC cell transplantation significantly reduced tumor growth and tumor-associated macrophage (TAM) infiltration in mice. Furthermore, local depletion of MGTRMs at the site of TNBC resection markedly reduced recurrence and distant metastases, and improved chemotherapy outcomes. This study demonstrates that MGTRMs are a major TAM resource and play pivotal roles in the growth and malignant progression of TNBC. The results highlight a possible novel anti-cancer approach targeting tissue-resident macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.