In the presence of a catalytic amount of Cp*RuCl(cod), 1,6-diynes chemoselectively reacted with monoalkynes at ambient temperature to afford the desired bicyclic benzene derivatives in good yields. A wide variety of diynes and monoynes containing functional groups such as ester, ketone, nitrile, amine, alcohol, sulfide, etc. can be used for the present ruthenium catalysis. The most significant advantage of this protocol is that the cycloaddition of unsymmetrical 1,6-diynes with one internal alkyne moiety regioselectively gave rise to meta-substituted products with excellent regioselectivity. Completely intramolecular alkyne cyclotrimerization was also accomplished using triyne substrates to obtain tricyclic aromatic compounds fused with 5-7-membered rings. A ruthenabicycle complex relevant to these cyclotrimerizations was synthesized from Cp*RuCl(cod) and a 1,6-diyne possessing phenyl terminal groups, and its structure was unambiguously determined by X-ray analysis. The intermediary of such a ruthenacycle intermediate was further confirmed by its reaction with acetylene, giving rise to the expected cycloadduct. The density functional study on the cyclotrimerization mechanism elucidated that the cyclotrimerization proceeds via oxidative cyclization, producing a ruthenacycle intermediate and subsequent alkyne insertion initiated by the formal [2 + 2] cycloaddition of the resultant ruthenacycle with an alkyne.
The coagulation of colloidal particles in a simple shear flow of a viscous fluid is considered. The coagulation rate between unequal spherical particles is calculated by use of approximate trajectory equations, and a kinetic equation of shear coagulation is proposed in which the hydrodynamic interaction between particles is taken into account. It is found that the coagulation rate decreases rapidly with increase of the ratio of particles radius ajaj and a dimensionless quantity QnpaltflA. Comparison between the present theory and the classical Smoluchowski theory indicates that the Smoluchowski theory is applicable to limited coagulation systems and that it overestimates the coagulation rate considerably whenapplied to common aqueous dispersions. It is also found that the change of particle concentration is conveniently estimated by a kinetic equation in which the coagulation rate between unequal particles is approximated by that between equal spheres. Introduction When colloidal dispersions are subjected to shear flow, particles collide1 because of their relative motion induced by the velocity field of the medium. If there
The ruthenium(II)-catalyzed tandem cycloaddition of 1,6-heptadiynes with bicyclic alkenes, such as bicyclo[3.2.1]heptenones and norbornene derivatives, furnishes the 1:2 adducts between the diynes and two molecules of the bicycloalkenes together with common [2 + 2 + 2] cyclocotrimerization products. The structure of a representative tandem 1:2 adduct between dimethyl dipropargylmalonate and 2,4-dimethylbicyclo[3.2.1]-oct-6-en-3-one was unequivocally determined by X-ray analysis and was concluded to involve an unusual 1,2-dicyclopropylcyclopentene skeleton. On the basis of the spectroscopic analogy, the previously communicated structures of the tandem cycloadducts between the diynes and norbornene derivatives were corrected. The formation of the tandem double-cyclopropanation products from the diynes is chemical evidence of a biscarbenoid hybrid structure, 1,3,5-metallacyclopentatriene, of the corresponding 2,4-metallacyclopentadiene intermediates. The selectivity for the formation of the tandem cyclopropanation adducts was increased in the order of (η 5 -C 9 H 7 )Ru(PPh 3 ) 2 Cl > CpRu(cod)Cl > Cp*Ru(cod)Cl, indicative of the η 5 f η 3 ring slippage of the cyclopentadienyl type ligands playing a key role in the tandem cyclopropanation. On the other hand, the normal [2 + 2 + 2] cyclocotrimerization between 1,6-heptadiynes and alkenes was selectively catalyzed by Cp*Ru(cod)Cl, in the case of cyclic or linear alkenes possessing heteroatoms at the allylic position. The latter heteroatom-assisted cyclocotrimerization was also catalyzed by a paramagnetic dinuclear ruthenium(III) complex, [Cp*RuCl 2 ] 2 , at lower temperature.
In the presence of a catalytic amount of [Cp*RuCl(cod)] (Cp*=pentamethylcyclopentadienyl, cod=1,5-cyclooctadiene), 1,6-diynes were allowed to react chemo- and regioselectively with nitriles bearing a coordinating group, such as dicyanides or alpha-halonitriles, at ambient temperature to afford bicyclic pyridines. Careful screening of nitrile components revealed that a C[triple chemical bond]C triple bond or heteroatom substituents, such as methoxy and methylthio groups, proved to act as the coordinating groups, whereas C==C or C==O double bonds and amino groups failed to promote cycloaddition. This suggests that coordinating groups with multiple pi-bonds or lone pairs are essential for the nitrile components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.