Our study has demonstrated for the first time that the infant calming response to maternal carrying is a coordinated set of central, motor, and cardiac regulations and is a conserved component of mammalian mother-infant interactions. Our findings provide evidence for and have the potential to impact current parenting theory and practice, since unsoothable crying is the major risk factor for child abuse.
Oxytocin facilitates allo-parental behavior under stress in laboratory mice Abbreviated Title (50 character maximum)Oxytocin, vasopressin and parental care 3. List all Author Names and Affiliations in order as they would appear in the published article
BackgroundA mother carries her young in many altricial mammals, such as cats, lions, rats and mice. During maternal carrying, the transported young assume a compact posture. We have recently shown that, in both humans and mice, the carried infants immediately calmed down and showed reductions in heart rate, distress vocalizations, and voluntary movement. The loss of the calming response in mouse pups hindered maternal retrieval efficacy. These findings suggested that the infant calming response functioned to reduce the maternal burden of carrying and was therefore conserved in a variety of mammalian species. However, it remains unclear how and when each component of this calming response develops and whether it is a filial-specific behavior.ResultsWe dissected various components of the carrying-induced responses in mouse pups, collectively called the “Transport Response” herein. We showed that during the second postnatal week, pups exhibited characteristic compact posture with limb ventroflexion. The body trunk remained paradoxically pliable, suggesting complex neural regulation throughout the body. Pups also showed an increased pain tolerance to a tail pinch during the Transport Response. Analyses of the developmental courses of distinct components of the Transport Response revealed the independent regulation of each component: in the first postnatal week, the cessation of ultrasonic vocalizations was exhibited prominently; in the second postnatal week, immobilization reached its peak; and toward the third postnatal week, the postural component became fully matured. At the end of the third postnatal week, when the pups are able to transport by themselves, the pups no longer exhibited the Transport Response.ConclusionsThis study has revealed the mouse Transport Response as a complex set of behavioral and physiological components, each of which has a specific postnatal time window but is orchestrated in a well-matched manner with the maturation of ambulatory ability in the pups. These findings collectively indicate that the Transport Response is a filial-specific, innate behavioral reaction and is distinct from a simple reflex or defensive freezing response. The Transport Response could be a novel index of primitive filial attachment behaviors, acting to smooth mother-infant interaction.
A human infant initially shows non-selective sociality, and gradually develops selective attachment toward its caregiver, manifested as “separation anxiety.” It was unclear whether such sophistication of attachment system occurs in non-human mammals. To seek a mouse model of separation anxiety, we utilized a primitive attachment behavior, the Transport Response, in that both human and mouse newborns immediately stop crying and stay immobile to cooperate with maternal carrying. We examined the mouse Transport Response in three social contexts: 30-min isolation in a novel environment, 30-min maternal absence experienced with littermates in the home cage, and the control home-cage condition with the mother and littermates. The pups after postnatal day (PND) 13 attenuated their Transport Response not only in complete isolation but also by maternal absence, and activated several brain areas including the periventricular nucleus of the hypothalamus, suggesting that 30-min maternal absence was perceived as a social stress by mouse pups after PND13. This attenuation of Transport Response by maternal absence was independent with plasma corticosterone, but was diminished by prior administration of a corticotropin-releasing factor receptor 1 (CRFR1) antagonist. Among 18 brain areas examined, only neurons in the anterior cingulate cortex (ACC) co-express c-fos mRNA and CRFR1 after maternal absence. Consistently, excitotoxic ACC lesions inhibited the maternal absence-induced attenuation of Transport Response. These data indicate that the expression of mouse Transport Response is influenced not only by social isolation but also by maternal absence even in their home cage with littermates after PND13, at least partly via CRF-CRFR1 signaling in the ACC.
SummaryThis study aimed to clarify the regulatory mechanism of Mg homeostasis on administration of excessive Mg in rats. Six-week-old male Wistar rats ( n ϭ 30) were fed a Mgdeficient diet (D) or a control diet (M) in addition to which they received subcutaneous injections of saline (S) or additional Mg (M) for 14 d. Feces and urine were collected from the rats for 4 d every week. Between the MS and MM rats and the DS and DM rats, the injection of additional Mg increased Mg retention, but intestinal Mg absorption did not differ. Urinary Mg excretion in the MM rats was significantly greater than that in the MS rats, but fecal Mg excretion did not increase. Mg retention in the DM rats was approximately 30% of that in the MS rats, and urinary Mg excretion did not differ between the 2 groups, although the serum Mg in DM rats was low. There was no significant difference in the femoral Mg between the MM and MS groups. The physiological Mg pool in the bone appears to be limited. Therefore, there is no physiological Mg pool for the storage of excessive Mg, and there appears to be no negative feedback mechanism on intestinal Mg absorption upon administration of excessive Mg in the rats. In conclusion, it appears that the kidney is the only organ that regulates Mg in the body; apart from this, regulatory mechanisms corresponding to the physiological Mg requirement do not exist or are weak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.