To develop a new generation ADAS that avoids a dangerous condition in advance, we need to predict driving behaviors. Since a nonparametric Bayesian method with a twolevel structure successfully predicted the symbolized behaviors only, we applied a nonparametric Bayesian method with linear dynamical systems to predict the driving behavior. The method called the beta process autoregressive hidden Markov model (BP-AR-HMM) segments driving behaviors into states each of which corresponds to an AR model and it predicts future behaviors using the estimated future state sequence and the dynamical systems therein. Here, the segmentation as well as the parameters of the dynamical systems are determined using given training data in an unsupervised way. We carried out experiments with real driving data and found that the BP-AR-HMM predicted driving behaviors better than other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.