A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the devel- oped TPC has unprecedented features such as the use of polyether-etherketone plates in the support structure and internal surfaces covered with 6 Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.
The neutron lifetime has been measured by comparing the decay rate with the reaction rate of $^3$He nuclei of a pulsed neutron beam from the spallation neutron source at the Japan Proton Accelerator Research Complex (J-PARC). The decay rate and the reaction rate were determined by simultaneously detecting electrons from the neutron decay and protons from the $^3$He(n,p)$^3$H reaction using a gas chamber, the working gas of which contains diluted $^3$He. The measured neutron lifetime was $898\,\pm\,10\,_{\rm stat}\,^{+15}_{-18}\,_{\rm sys}\,$s.
The neutron lifetime (τ n ) is one of the basic parameters in the weak interaction, and is used for predicting the light element abundance in the early universe. Our group developed a new setup to measure τ n with the goal precision of 0.1% at the polarized beam branch BL05 of MLF, J-PARC. The commissioning data was acquired in 2014 and 2015, and the first set of data to evaluate τ n in 2016, which is expected to yield a statistical uncertainty of O(1)%. This paper presents the current analysis results and the future plans to achieve our goal precision.
In a neutron lifetime measurement at the Japan Proton Accelerator Complex, the neutron lifetime is calculated from the neutron decay rate and the incident neutron flux. The flux is obtained by counting the protons emitted from the neutron absorption reaction of ${}^{3}{\rm He}$ gas, which is diluted in a mixture of working gas in a detector. Hence, it is crucial to determine the amount of ${}^{3}{\rm He}$ in the mixture. In order to improve the accuracy of the number density of the ${}^{3}{\rm He}$ nuclei, we have suggested using the ${}^{14}{\rm N}({\rm n},{\rm p}){}^{14}{\rm C}$ reaction as a reference because this reaction involves similar kinetic energy to the $^3$He(n,p)$^3$H reaction and a smaller reaction cross section to introduce reasonable large partial pressure. The uncertainty of the recommended value of the cross section, however, is not satisfied with our requirement. In this paper we report the most accurate experimental value of the cross section of the $^{14}$N(n,p)$^{14}$C reaction at a neutron velocity of 2200 m s$^{-1}$, measured relative to the $^3$He(n,p)$^3$H reaction. The result was 1.868 $\pm$ 0.003 (stat.) $\pm$ 0.006 (sys.) b. Additionally, the cross section of the $^{17}$O(n,$\alpha$)$^{14}$C reaction at the neutron velocity is also redetermined as 249 $\pm$ 6 mb.
The decay lifetime of free neutrons (∼880 s) is an important parameter of the weak interaction and for Big Bang Nucleosynthesis. However, results of measurements currently show discrepancies depending on the method used. As most experiments nowadays employ ultra cold neutrons, we have developed a new cold-beam experiment which we perform at the Japan Proton Accelerator Research Complex. As a special feature, a polarized neutron beam is bunched by a spin flip chopper. A time projection chamber operated with He and CO 2 gas, including a well-controlled amount of 3 He, is used for detection of the beta-decays and simultaneous determination of the beam intensity. Using the data between 2014 and 2016, we evaluated our first, preliminary result of the neutron lifetime as 896 ± 10(stat.) +14 −10 (sys.) s. We plan several upgrades to achieve our precision goal of 1 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.