Image formation in a collinear holographic storage system was analyzed. The wavefront from each pixel of a spatial light modulator was regarded as a plane wave in the recording medium, and its wave vector was determined by the position of the pixel. The hologram in the recording medium was treated as the summation of all gratings written by all combinations of two plane waves. The image of a data page was formed by diffraction of the reference waves by all gratings. The results of the simulation showed good agreement with experiment. We introduced the pixel spread function to describe the image formation characteristics. Analysis of the pixel spread function reveals that a radial-line pixel pattern for reference waves gave a sharper image than other reference pixel patterns. It is also shown that a random phase modulation applied to each reference pixel improved the image formation.
Treasure is a pervasive game playing in the context of people's daily living environments. Unlike previous pervasive games that are based on the predefined contents and proprietary devices, Treasure exploits the "design-in-play" concept to enhance the variability of a game in mixed-reality environments. Dynamic and personalized role design and allocation by players is enabled by exploring local smart objects as game props. The variability of the game is also enhanced by several other aspects, such as user-oriented context-aware action setting and playing environment redeployment. The effectiveness of the "design-in-play" concept is validated through a user study, where 15 subjects were recruited to play and author the trial game.
Electromagnetically induced absorption (EIA) is an optical phenomenon that enhances light absorption of plasmonic systems. Depending on the plasmonic system under investigation, the decisive role of intrinsic versus radiative damping and phase retardation has been pointed out to control the EIA. Herein, a unified interpretation is provided and the mechanism of EIA for plasmonic–dielectric composites and all‐plasmonic dipolar–quadrupolar antennas is unraveled. In this theoretical work, the finite element method is used to elucidate how EIA is attributed to an absorption enhancement of a resonance mode excited by near‐field coupling. For a fundamental understanding, a quantitative analysis is developed by designing an extended coupled‐oscillator model. A critical parameter to maximize EIA is found, which is different from previous interpretations of such coupled plasmonic systems. Namely, the ratio of coupling strength to the total damping of the entire system controls EIA. The generalized interpretation of EIA given by this work can be applied to many plasmonic systems and is essential for designing future optical components and devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.