We propose a kinetic model to describe a pancake-type void propagation in flip chip solder joints due to current crowding in electromigration. The divergence of the vacancy fluxes at the interface between the solder and Cu6Sn5 leads to void formation and propagation along the interface between them. Based on the continuity condition, the void growth velocity is calculated. The theoretical calculations are in reasonable agreement with the experimental results.
As the electronics industry continues to push for miniaturization, several reliability factors become vital issues. The demand for a high population of smaller and smaller solder bumps, while also increasing the current, have resulted in a significant increase in the current density. As outlined in the International Technology of Roadmap for Semiconductors (ITRS), this trend makes electromigration the limiting factor in high density packages. The heightened current density and correspondingly elevated operating temperatures are a critical issue in reliability since these factors facilitate the effects of electromigration. Therefore, as bump sizes continue to decrease, the study of electromigration reliability becomes crucial in order to understand and possibly prevent the causes of failure. A systematic study of electromigration in eutectic SnPb and Pb-free solder bumps was conducted in order to characterize the reliability of the Micro SMD package family. The testing includes both eutectic 63Sn-37Pb and 95.5Sn4.0Ag-0.5Cu solder bumps on an Al/Ni(V)/Cu under-bump-metallization. Mean-time-to-failure results are compared to Black’s Equation and cross-sections of the solder bumps are shown to analyze the mechanisms that led to failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.