We designed a polymerase chain reaction (PCR) for amplifying the Helicobacter pylori gene encoding 16S rRNA. Primers for the specific detection of H. pylori were designed for areas of the 16S rRNA gene in which there is the least sequence homology between H. pylori and its closest relatives. The specificity of detection was confirmed by ensuring that the primers did not amplify DNA extracts from the campylobacters H. cinaedi, H. mustelae, and Wolinela succinogenes, which are the closest relatives of H. pylori, as determined by 16S rRNA sequencing. Serial dilution experiments revealed the detection of as little as 0.1 pg of DNA by PCR and 0.01 pg by nested PCR. H. pylori DNA was detected successfully in clinical paraffin-embedded and fresh gastric biopsy specimens from patients positive for the bacterium and also in fecal suspensions seeded with the organism. The DNA from the nonculturable coccoid form of H. pylori was also identified by the primers. Universal primers designed for highly conserved areas on the 16S rRNA gene enabled large amplification products to be produced for direct sequencing analysis. Gastric bacteria resembling H. pylori have been isolated from animals. DNA of these animal gastric bacteria amplified with H. pylori-specific primers yielded PCR products identical to those from human isolates of H. pylori, as confirmed by the use of a 20-base radiolabelled probe complementary to an internal sequence flanked by the H. pylori-specific primers. The results of PCR amplification and partial 16S rRNA gene sequence analysis strongly support the contention that the gastric organisms previously recovered from a pig, a baboon, and rhesus monkeys are H. pylori.
Human SV-SMCs are inherently more proliferative and invasive than paired IMA-SMCs, likely due to a relative increase in p44/42-MAPK activation. These inherent functional differences between SMC of different origins may contribute to the increased prevalence of intimal hyperplasia in SV grafts compared with IMA grafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.