We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications.
In this article, we describe the mathematical framework of the computational model at the core of the tool The Virtual Brain (TVB), designed to simulate collective whole brain dynamics by virtualizing brain structure and function, allowing simultaneous outputs of a number of experimental modalities such as electro- and magnetoencephalography (EEG, MEG) and functional Magnetic Resonance Imaging (fMRI). The implementation allows for a systematic exploration and manipulation of every underlying component of a large-scale brain network model (BNM), such as the neural mass model governing the local dynamics or the structural connectivity constraining the space time structure of the network couplings. Here, a consistent notation for the generalized BNM is given, so that in this form the equations represent a direct link between the mathematical description of BNMs and the components of the numerical implementation in TVB. Finally, we made a summary of the forward models implemented for mapping simulated neural activity (EEG, MEG, sterotactic electroencephalogram (sEEG), fMRI), identifying their advantages and limitations.
A disturbance in the interactions between distributed cortical regions may underlie the cognitive and perceptual dysfunction associated with schizophrenia. In this article, nonlinear measures of cortical interactions and graph-theoretical metrics of network topography are combined to investigate this schizophrenia ''disconnection hypothesis.'' This is achieved by analyzing the spatiotemporal structure of resting state scalp EEG data previously acquired from 40 young subjects with a recent first episode of schizophrenia and 40 healthy matched controls. In each subject, a method of mapping the topography of nonlinear interactions between cortical regions was applied to a widely distributed array of these data. The resulting nonlinear correlation matrices were converted to weighted graphs. The path length (a measure of large-scale network integration), clustering coefficient (a measure of ''cliquishness''), and hub structure of these graphs were used as metrics of the underlying brain network activity. The graphs of both groups exhibited high levels of local clustering combined with comparatively short path lengths-features consistent with a ''small-world'' topology-as well as the presence of strong, central hubs. The graphs in the schizophrenia group displayed lower clustering and shorter path lengths in comparison to the healthy group. Whilst still ''small-world,'' these effects are consistent with a subtle randomization in the underlying network architecture-likely associated with a greater number of links connecting disparate clusters. This randomization may underlie the cognitive disturbances characteristic of schizophrenia. Hum Brain Mapp 30: [403][404][405][406][407][408][409][410][411][412][413][414][415][416] 2009. V V C 2007 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.