The potential of ultrawide-bandgap (UWBG) semiconductors has not been fully explored because of the difficulty of forming a p-n homojunction. In this study, a mixed-dimensional UWBG p-n heterojunction composed of a p-type diamond substrate and an n-type exfoliated β-Ga2O3 nanolayer has been demonstrated via a van der Waals interaction; this type of structure does not suffer from lattice mismatch. Rectifying current-voltage characteristics with a rectification ratio exceeding 107 were obtained with a high reverse hard breakdown voltage of 135 V. This UWBG p-n heterojunction diode exhibited good thermal stability at elevated temperatures, retaining its high rectification ratio and low reverse leakage current. Excellent photoresponse characteristics, including responsivity (12 A W−1), rejection ratio (8.5 × 103), photo-to-dark-current ratio (3900), and fast response/decay characteristics, were observed from the diamond/β-Ga2O3 p-n heterojunction photodiode, showing no persistent photoconductivity. The mixed-dimensional p-n heterojunction diode based on two UWBG semiconductors (p-type diamond and n-type β-Ga2O3) can be used as a robust building block in next-generation power electronics and solar-blind optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.