Hunt, G. L., Coyle, K. O., Eisner, L. B., Farley, E. V., Heintz, R. A., Mueter, F., Napp, J. M., Overland, J. E., Ressler, P. H., Salo, S., and Stabeno, P. J. 2011. Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the Oscillating Control Hypothesis. – ICES Journal of Marine Science, 68: 1230–1243. Walleye pollock (Theragra chalcogramma) is an important component of the eastern Bering Sea ecosystem and subject to major fisheries. The Oscillating Control Hypothesis (OCH) predicted that recruitment of pollock year classes should be greatest in years with early ice retreat and late blooms in warm water, because more energy would flow into the pelagic (vs. benthic) community. The OCH further predicted that, with pollock population growth, there should be a shift from bottom-up to top-down regulation. New data support the predictions that in those years with early ice retreat, more primary production accrues to the pelagic compartment and that large numbers of age-0 pollock survive to summer. However, in these years, production of large crustacean zooplankton is reduced, depriving age-0 pollock of lipid-rich prey in summer and autumn. Consequently, age-0 pollock energy reserves (depot lipids) are low and predation on them is increased as fish switch to age-0 pollock from zooplankton. The result is weak recruitment of age-1 recruits the following year. A revised OCH indicates bottom-up constraints on pollock recruitment in very warm periods. Prolonged warm periods with decreased ice cover will likely cause diminished pollock recruitment and catches relative to recent values.
During 1997 and 1998, unusual physical conditions occurred in the Bering Sea: strong May storms and calm conditions in July; record high sea surface temperature; a shallow wind mixed layer; a fresher‐than‐normal water column; and abnormal cross‐shelf currents. Accompanying these conditions were changes in the dominant phytoplankton, a die‐off of seabirds, increased sightings of large whales and diminished returns of salmon. Changes to the physical environment during 1997 and 1998 are placed in context of historical meteorological and oceanographic data sets. Although 1997 had the warmest sea surface temperature ever observed on the south‐east Bering Sea shelf, the heat content of the water column was cooler than average. In contrast, during 1998, the sea surface temperature was cooler than in 1997 but the water column had significantly higher heat content. During recent years, the water column has freshened over the middle shelf because of increased sea ice and reduction of on‐shelf transport of the saline, high‐nutrient water from the slope. The timing of the spring bloom is directly related to the presence of ice. When ice is advected over the south‐east shelf during March/April an early, sharp phytoplankton bloom occurs. The absence of ice during this critical time is associated with a May/June bloom.
Four years of temperature, salinity, and velocity data enable a direct computation of volume transport and a temporal description of water properties exchanged through the Bering Strait. The mean volume transport over the 4‐year period (September 1990 through September 1994) is 0.83 Sv northward with a weekly standard deviation of 0.66 Sv. The maximum error in this mean estimate is 30%. Interannual variability in transport is typically 0.1 Sv but can, at times, reach nearly 50% of the mean. The transport of 1.14 Sv during the first 9 months of 1994 is the largest in the last 50 years. The rate of winter salinity increase is very similar from year to year, suggesting regional average ice formation of about 5 cm d−1. The amplitude of the annual salinity cycle is about 2 psu, with salinity reaching a maximum in early April. There can be large interannual variations in the salinity (about 1), particularly in winter. Background autumn salinities average 32.0 in the eastern and 32.6 in the western channel.
To examine the marine habitat of the endangered western stock of the Steller's sea lion (Eumetopias jubatus), two interdisciplinary research cruises (June 2001 and May to June 2002) measured water properties in the eastern and central Aleutian Passes. Unimak, Akutan, Amukta, and Seguam Passes were sampled in both years, and three additional passes (Umnak, Samalga, and Tanaga) were sampled in 2002. In the North Pacific (and to a lesser extent in the Bering Sea), a strong front in water properties was observed near Samalga Pass in June of both years, with significantly warmer, fresher, and more nitrate‐poor water east of Samalga Pass than west of the pass. These water properties reflect differences in source waters (Alaska Coastal Current versus Alaskan Stream), mixing depth, and Bering Sea influence. Strong cross‐Aleutian gradients were also observed with warmer, fresher water on the North Pacific side of the archipelago. The nutrient content of the waters flowing through the passes, combined with the effects of mixing within the passes, influences the transport of nutrients into the Bering Sea. As water moves away from the strong mixing of the passes and becomes more stratified, phytoplankton can take advantage of the enhanced nutrient concentrations. Thus, the northern side of the Aleutian Islands (especially in the lee of the islands) appears to be more productive. Combined with evidence of coincident changes in many ecosystem parameters near Samalga Pass, it is hypothesized that Samalga Pass forms a physical and biogeographic boundary between the eastern and central Aleutian marine ecosystems.
The inner front of the southeastern Bering Sea shows marked spatial variability in frontal characteristics created by regional differences in forcing mechanisms. Differences in forcing mechanisms (sea ice advance/retreat and storm strength and timing) and early spring water properties result in strong interannual variability in biological, chemical, and physical features near the front. We have developed a simple model based on surface heat flux and water-column mixing to explain the existence of cold belts (Cont. Shelf Res. 19(14) (1999) 1833) associated with such fronts. Hydrography, fluorescence and nutrient observations show that pumping of nutrients into the euphotic zone occurs, and this can prolong primary production at the inner front. The effectiveness of this process depends on two factors: the existence of a reservoir of nutrients in the lower layer on the middle shelf and the occurrence of sufficient wind and tidal energy to mix the water column. r
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.