A 1.8-m paraboloidal reflector fed by a dipole-disk antenna with a beamforming ring is optimized for high G=T at L-band by using the moment method (MM) and the multiple reflection (MR) approach. The MR approach is based on using MM to calculate the radiation and scattering patterns of the feed, using physical optics plus uniform geometrical theory of diffraction (UTD) to include the reflector, and in addition to include the mutual interaction (multiple reflections) between the reflector and the feed by using the expression for the sum of an infinite geometric series. The MR approach is shown to be equally accurate as a MM solution of the complete antenna with reflector, provided the reflector is in the far field of the feed, and the MR approach is much faster. As a result of the calculations using the MR approach, design curves are presented showing how the G=T varies as a function of antenna geometry, size, and elevation angle, all for a given noise profile of the surrounding sky and ground. The computed radiation patterns and G=T s are compared with measurements for several elevation angles and surrounding terrain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.