The high-pressure electro-dynamic gradient (HP-EDG) crystal-growth technology has been recently developed and introduced at eV PRODUCTS to grow large-volume, semi-insulating (SI) CdZnTe single crystals for room-temperature x-ray and gamma-ray detector applications. The new HP growth technology significantly improves the downstream CdZnTe device-fabrication yield compared to earlier versions of the HP crystal-growth technology because of the improved structural and charge-transport properties of the CdZnTe ingots. The new state-of-the-art, HP-EDG crystal-growth systems offer exceptional flexibility and thermal and mechanical stability and allow the growth of high-purity CdZnTe ingots. The flexibility of the multi-zone heater system allows the dynamic control of heat flow to optimize the growth-interface shape during crystallization. This flexibility combined with an advanced control system, improved system diagnostics, and realistic heat-transport modeling provides an excellent platform for continuing process development. Initial results on largediameter (140 mm), SI Cd 1-x Zn x Te (x ϭ 0.1) ingots grown in low temperature gradients with the HP-EDG technique show reduced defect density and complete elimination of ingot cracking. The increased single-crystal yield combined with the improved charge transport allows the fabrication of large-volume, high-sensitivity, high energy-resolution detector devices at increased yield. The CdZnTe ingots grown to date produced large-volume crystals (Ն1 cm 3 ) with electron mobility-lifetime product (µτ e ) in the (3-7) ϫ 10 Ϫ3 cm 2 /V range. The lower-than-desired charge-transport uniformity of the HP-EDG CdZnTe ingots is associated with the high density of Te inclusions formed in the ingots during crystallization. The latest process-development efforts show a reduction in the Te-inclusion density, an increase of the charge-transport uniformity, and improved energy resolution of the large-volume detectors fabricated from these crystals.
It has been observed that pixillated CdZnTe detectors fabricated from crystals with low hole transport properties (μhτh<10−5cm2V−1) experience a dynamic lateral polarization when exposed to a high flux of x-rays. In this effect, counts are transferred from pixels near the edge of the irradiated region to pixels in the interior. In this letter, we propose a mechanism capable of explaining the observed dynamical effect. The mechanism is based on a transverse electric field that is generated due to space charge that builds within the material. This transverse field, in turn, is responsible for the altered carrier trajectories toward the center of the irradiated region.
We present the design of the gamma-ray and neutron spectrometer (GR/NS) for Dawn, which is a NASA Discoveryclass mission to explore two of the largest main-belt asteroids, 1 Ceres and 4 Vesta, whose accretion is believed to have been interrupted by the early formation of Jupiter. Dawn will determine the composition and structure of these protoplanetary bodies, providing context for a large number of primitive meteorites in our sample collection and a better understanding of processes occurring shortly after the onset of condensation of the solar nebula. The Dawn GR/NS design draws on experience from the successful Lunar Prospector and Mars Odyssey missions to enable accurate mapping of the surface composition and stratigraphy of major elements, radioactive elements, and hydrogen at both asteroids. Here, we describe the overall design of the GR/NS and compare the expected performance of the neutron spectrometer subsystem to the neutron spectrometer on Mars Odyssey. We also describe radiation damage studies carried out on CdZnTe detectors, which will be components of the primary gamma-ray spectrometer on Dawn. We conclude that provisions for annealing at moderate temperatures (40 C to 60 C) must be made to ensure that the spectrometer will function optimally over the nine-year mission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.