The apparent size of stars is a crucial benchmark for fundamental stellar properties such as effective temperatures, radii and surface gravities. While interferometric measurements of stellar angular diameters are the most direct method to gauge these, they are still limited to relatively nearby and bright stars, which are saturated in most of the modern photometric surveys. This dichotomy prevents us from safely extending well calibrated relations to the faint stars targeted in large spectroscopic and photometric surveys. Here, we alleviate this obstacle by presenting SAAO near-infrared JHK observations of 55 stars: 16 of them have interferometric angular diameters, and the rest are in common with the 2MASS (unsaturated) dataset, allowing us to tie the effective temperatures and angular diameters derived via the Infrared Flux Method to the interferometric scale. We extend the test to recent interferometric measurements of unsaturated 2MASS stars, including giants, and the metal-poor benchmark target HD122563. With a critical evaluation of the systematics involved, we conclude that a 1 per cent accuracy in fundamental stellar parameters is usually within reach. Caution, however, must be used when indirectly testing a T eff scale via colour relations, as well as when assessing the reliability of interferometric measurements, especially at sub-milliarcsec level. As a result, rather different effective temperature scales can be compatible with a given subset of interferometric data. We highlight some caveats to be aware of in such a quest, and suggest a simple method to check against systematics in fundamental measurements. A new diagnostic combination seismic radii with astrometric distances is also presented.
Asteroseismology has been extremely successful in determining the properties of stars in different evolutionary stages with a remarkable level of precision. However, to fully exploit its potential, robust methods for estimating stellar parameters are required and independent verification of the results is needed. In this talk, I present a new technique developed to obtain stellar properties by coupling asteroseismic analysis with the InfraRed Flux Method. Using two global seismic observables and multi-band photometry, the technique determines masses, radii, effective temperatures, bolometric fluxes, and thus distances for field stars in a self-consistent manner. Applying our method to a sample of solar-like oscillators in the {\it Kepler} field that have accurate {\it Hipparcos} parallaxes, we find agreement in our distance determinations to better than 5%. Comparison with measurements of spectroscopic effective temperatures and interferometric radii also validate our results, and show that our technique can be applied to stars evolved beyond the main-sequence phase.Comment: 4 pages, to appear in the Proceedings of the 17th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, eds. K. Strassmeier & M. Lopez-Morales (AN, Vol. 334
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.