We report on the development of a new family of magnetic field sensors with exceptionally low magnetic field noise, as low as 0.3 fT Hz −1/2 . Beside this, they exhibit high usable voltage swings of more than 150 μV pp and tolerable background fields during cool-down of up to 6.5 mT. In operation mode they recover completely from magnetization pulses of up to 76 mT, which makes them well suited for applications such as low-field magnetic resonance imaging.With respect to their easy and reliable use as well as their field resolution in the sub-fT Hz −1/2 range, the presented SQUID sensors are adequate for many applications, such as in geophysics or in biomagnetism.
We study a flux qubit in a coplanar waveguide resonator by measuring transmission through the system. In our system with the flux qubit decoupled galvanically from the resonator, the intermediate coupling regime is achieved. In this regime, dispersive readout is possible with weak back action on the qubit. The detailed theoretical analysis and simulations give good agreement with the experimental data and allow us to make the qubit characterization.
We report on a technology for the fabrication of sub-micrometer sized cross-type
Josephson tunnel junctions in niobium technology. We present the fabrication scheme
and properties of cross-type junctions with linear dimensions from 10 down to
0.6 µm. Sidewall passivation of the junctions is achieved by anodization as well as by planarizing
the junctions with SiO in a self-aligned deposition step. The measured ratio of the sub-gap
resistance to the normal resistance is about 35. Because of their low sub-gap current and
low parasitic capacitance such junctions are well suited for applications like high resolution
SQUIDs.
GaAs-based quantum-cascade lasers based on a bound-to-continuum transition have been realized and characterized. This band structure design combines the advantages of the well known three-well and superlattice active regions. We observed lasing of Fabry–Pérot lasers in pulsed mode up to a temperature of 100 °C. Multimode emission with a pulsed peak power of 340 mW is observed at room temperature and 42 mW at 80 °C. Further, from aging tests we expect a lifetime of over 60 years for these devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.