There is an increasing interest in using graphene1,2 for optoelectronic applications.3−19 However, because graphene is an inherently weak optical absorber (only ≈2.3% absorption), novel concepts need to be developed to increase the absorption and take full advantage of its unique optical properties. We demonstrate that by monolithically integrating graphene with a Fabry-Pérot microcavity, the optical absorption is 26-fold enhanced, reaching values >60%. We present a graphene-based microcavity photodetector with responsivity of 21 mA/W. Our approach can be applied to a variety of other graphene devices, such as electro-absorption modulators, variable optical attenuators, or light emitters, and provides a new route to graphene photonics with the potential for applications in communications, security, sensing and spectroscopy.
The increasing demand of rapid sensing and diagnosis in remote areas requires the development of compact and cost-effective mid-infrared sensing devices. So far, all miniaturization concepts have been demonstrated with discrete optical components. Here we present a monolithically integrated sensor based on mid-infrared absorption spectroscopy. A bi-functional quantum cascade laser/detector is used, where, by changing the applied bias, the device switches between laser and detector operation. The interaction with chemicals in a liquid is resolved via a dielectric-loaded surface plasmon polariton waveguide. The thin dielectric layer enhances the confinement and enables efficient end-fire coupling from and to the laser and detector. The unamplified detector signal shows a slope of 1.8–7 μV per p.p.m., which demonstrates the capability to reach p.p.m. accuracy over a wide range of concentrations (0–60%). Without any hybrid integration or subwavelength patterning, our approach allows a straightforward and cost-saving fabrication.
Strange metal behavior is ubiquitous in correlated materials ranging from cuprate superconductors to bilayer graphene. There is increasing recognition that it arises from physics beyond the quantum fluctuations of a Landau order parameter which, in quantum critical heavy fermion antiferromagnets, may be realized as critical Kondo entanglement of spin and charge. The dynamics of the associated electronic delocalization transition could be ideally probed by optical conductivity, but experiments in the corresponding frequency and temperature ranges have remained elusive. We present terahertz time-domain transmission spectroscopy on molecular beam epitaxy-grown thin films of YbRh 2 Si 2 , a model strange metal compound. We observe frequency over temperature scaling of the optical conductivity as a hallmark of beyond-Landau quantum criticality. Our discovery implicates critical charge fluctuations as playing a central role in the strange metal behavior, thereby elucidating one of the longstanding mysteries of correlated quantum matter. arXiv:1808.02296v1 [cond-mat.str-el]
Double-barrier GaN resonant tunneling diodes with AlGaN barriers were fabricated on bulk (0001) single-crystal GaN substrates. Layers were grown using molecular-beam epitaxy with a rf plasma nitrogen source. Single diodes of 6μm diameter were prepared by inductively coupled plasma reactive ion etching. For many diodes clear negative differential resistance is observed around 2V with peak currents around 10kA∕cm2 and a peak-to-valley ratio of about 2 at room temperature. Its observation does not depend on specific conditions of measurement; however, it slowly decays after each measurement. The mechanism behind this decay is investigated since it is obviously prohibiting the usage of GaN resonant tunneling diodes so far. It is shown not to be caused by catastrophic breakdown of the devices.
We directly measure optical bound states in the continuum (BICs) by embedding a photodetector into a photonic crystal slab. The BICs observed in our experiment are the result of accidental phase matching between incident, reflected and in-plane waves at seemingly random wave vectors in the photonic band structure. Our measurements were confirmed through a rigorously coupled-wave analysis simulation in conjunction with temporal coupled mode theory. Polarization mixing between photonic crystal slab modes was observed and described using a plane wave expansion simulation. The ability to probe the field intensity inside the photonic crystal and thereby to directly measure BICs represents a milestone in the development of integrated opto-electronic devices based on BICs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.