In this work, submicron-size (down to 0.273 μm2) spin–dependent tunnel junctions with resistance as low as ∼30 Ω μm2 have been fabricated, where the tunneling barrier of AlOx was formed by in situ natural oxidation. These junctions annealed at 250 °C for 5 h showed tunneling magnetoresistance (TMR) of 14.3% and 25.8% for the pinned layers of CoFe/RuRhMn and CoFe/PtMn, respectively, while the TMR is further increased to 31.6% for a synthetic antiferromagnetic pinned layer of CoFe/Ru/CoFe/PtMn due to less interdiffusion at CoFe/Ru interface. The investigation has indicated that the growth of ultrathin Al layer is very sensitive to the surface roughness of bottom ferromagnetic electrode, and large surface roughness leads to small junction resistance.
In this work, a technique, gas cluster ion beam (GCIB), was introduced to smooth the bottom NiFe magnetic shield for magnetic tunnel junction (MTJ) read heads. The GCIB treatment can bring the surface roughness of the shield from 15 to 20 Å to around 5 Å, and the most of scratch marks can be removed. The efficiency of the GCIB process is dependent on the initial surface morphology. The MTJs grown on the magnetic shield smoothed by the GCIB show that the resistance area product RA is increased from 60 to ∼100 Ω μm2 with the GCIB dose up to 1×1016 ions/cm2, arising from a smooth insulating layer, meanwhile, the tunneling magnetoresistance (TMR) is almost constant or slightly decreases. This GCIB process can also improve breakdown voltage (approximately 0.019 V per 1015 ions/cm2) of the MTJs, and slightly increase the ferromagnetic coupling mainly due to the change of the surface morphology. Using this technology, an RA as low as 3.5–6.5 Ω μm2 together with a TMR of 14%–18% can be obtained for MTJs grown on the GCIB treated NiFe magnetic shield.
In this work, the dielectric breakdown in magnetic tunnel junctions ͑MTJs͒ was studied. The MTJ structure is Ta50/NiFe100/Co20/AlOx/Co30/RuRhMn100/Ta50 with the bottom lead of Ta50/ Cu500/Ta50 and the top lead of Cu2000/Ta50 ͑in Å͒, where the tunneling barrier was formed by 2-20 min radical oxygen oxidation of a 10 Å-thick Al layer. The junctions with area from 2ϫ2 to 20ϫ20 m 2 were patterned using the photolithography process, leading to tunneling magnetoresistance up to 17.2% and resistance-area product ranging from 350 ⍀ m 2 to 200 k⍀ m 2 . The junctions studied show dc breakdown voltage from 0.7 to 1.3 V, depending on the junction area and the oxidation time. Long oxidation time up to 14 min and a small junction area results in a large dc breakdown voltage. The electrostatic discharge ͑ESD͒ of MTJs was tested by using a human body model. The ESD breakdown voltage increases with decreasing junction resistance. These results are discussed in terms of the E-model based on the field-induced distortion of atomic bonds in the oxide barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.