These guidelines summarize the current views of the European Association of Nuclear Medicine Neuroimaging Committee (ENC). The purpose of the guidelines is to assist nuclear medicine practitioners in making recommendations, performing, interpreting, and reporting the results of fluorine-18 fluoro-2-deoxyglucose ([(18)F]FDG) PET imaging of the brain. The aim is to help achieve a high standard of FDG imaging, which will increase the diagnostic impact of this technique in neurological and psychiatric practice. The present document replaces a former version of the guidelines that were published in 2002 [1] and includes an update in the light of advances in PET technology, the introduction of hybrid PET/CT systems and the broadening clinical indications for FDG brain imaging. These guidelines are intended to present information specifically adapted for European practice. The information provided should be taken in the context of local conditions and regulations.
BACKGROUND: Because of intratumoral heterogeneity, diffusely infiltrating gliomas that lack significant contrast enhancement on magnetic resonance imaging are prone to tissue sampling error. Subsequent histologic undergrading may delay adjuvant treatments. 5-Aminolevulinic acid (5-ALA) leads to accumulation of fluorescent porphyrins in malignant glioma tissue, and is currently used for resection of malignant gliomas. The aim of this study was to clarify whether 5-ALA might serve as marker for visualization of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement for precise intraoperative tissue sampling. METHODS: 5-ALA was administered in 17 patients with diffusely infiltrating gliomas with nonsignificant contrast enhancement. During glioma resection, positive fluorescence was noted by a modified neurosurgical microscope. Intraoperative topographic correlation of focal 5-ALA fluorescence with maximum 11 C-methionine positron emission tomography uptake (PET max ) was performed. Multiple tissue samples were taken from areas of positive and/or negative 5-ALA fluorescence. Histopathological diagnosis was established according to World Health Organization (WHO) 2007 criteria. Cell proliferation was assessed for multiregional samples by MIB-1 labeling index (LI). RESULTS: Focal 5-ALA fluorescence was observed in 8 of 9 patients with WHO grade III diffusely infiltrating gliomas. All 8 of 8 WHO grade II diffusely infiltrating gliomas were 5-ALA negative. Focal 5-ALA fluorescence correlated topographically with PET max in all patients. MIB-1 LI was significantly higher in 5-ALA-positive than in nonfluorescent areas within a given tumor. CONCLUSIONS: The data indicate that 5-ALA is a promising marker for intraoperative visualization of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Unaffected by intraoperative brain shift, 5-ALA may increase the precision of tissue sampling during tumor resection for histopathological grading, and therefore optimize allocation of patients to adjuvant treatments. Cancer 2010;116:1545-52.
This study provides a large database of [(123)I]FP-CIT SPECT scans in healthy controls across a wide age range and with balanced gender representation. Higher DAT availability was found in women than in men. An average age-related decline in DAT availability of 5.5 % per decade was found for both genders, in agreement with previous reports. The data collected in this study may serve as a reference database for nuclear medicine centres and for clinical trials using [(123)I]FP-CIT SPECT as the imaging marker.
SUMMARYThe application of an automatic sleep spindle detection procedure allowed the documentation of the topographic distribution of spindle characteristics, such as number, amplitude, frequency and duration, as a function of sleep depth and of recording time. Multichannel all-night EEG recordings were performed in 10 normal healthy subjects aged 20-35 years. Although the interindividual variability in the number of sleep spindles was very high (2.7±2.1 spindles per minute stage 2 sleep), all but two subjects showed maximal spindle activity in centro-parietal midline leads. Moreover, this topography was seen in all sleep stages and changed only slightly -to a more central distribution -towards the end of the night. On the other hand, slow (11.5-14 Hz) and fast (14-16 Hz) spindles showed a completely different topography, with slow spindles distributed anteriorly and fast spindles centro-parietally. The number of sleep spindles per min was significant depending on sleep stages, with the expected highest occurrence in stage 2, and on recording time, with a decrease in spindle density from the beginning towards the end of the night. However, spindle amplitude, frequency and individual duration was not influenced by sleep depth or time of the night.
Imaging of amino acid transport in brain tumours is more sensitive than fluorine-18 2-fluoro-deoxyglucose positron emission tomography (PET). The most frequently used tracer in this field is carbon-11 methionine (MET), which is unavailable for PET centres without a cyclotron because of its short half-life. The purpose of this study was to evaluate the performance of 3,4-dihydroxy-6-[(18)F]fluoro-phenylalanine (FDOPA) in this setting, in comparison with MET. Twenty patients with known supratentorial brain lesions were referred for PET scans with FDOPA and MET. The diagnoses were 18 primary brain tumours, one metastasis and one non-neoplastic cerebral lesion. All 20 patients underwent PET with FDOPA (100 MBq, 20 min p.i.), and 19 of them also had PET scans with MET (800 MBq, 20 min p.i.). In all but one patient a histological diagnosis was available. In 15 subjects, histology was known from previous surgical interventions; in five of these patients, as well as in four previously untreated patients, histology was obtained after PET. In one untreated patient, confirmation of PET was possible solely by correlation with MRI; a histological diagnosis became available 10 months later. MET and FDOPA images matched in all patients and showed all lesions as hot spots with higher uptake than in the contralateral brain. Standardised uptake value ratios, tumour/contralateral side (mean+/-SD), were 2.05+/-0.91 for MET and 2.04+/-0.53 for FDOPA (NS). The benign lesion, which biopsy revealed to be a focal demyelination, was false positive, showing increased uptake of MET and FDOPA. We conclude that FDOPA is accurate as a surrogate for MET in imaging amino acid transport in malignant cerebral lesions for the purpose of visualisation of vital tumour tissue. It combines the good physical properties of (18)F with the pharmacological properties of MET and might therefore be a valuable PET radiopharmaceutical in brain tumour imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.